-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathpr_particle.py
executable file
·132 lines (93 loc) · 3.61 KB
/
pr_particle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/env python
import ublox, sys, os
import numpy
import numpy.linalg as linalg
import satelliteData, positionEstimate, util
import pybayes, pybayes.pdfs, pybayes.filters
from optparse import OptionParser
parser = OptionParser("pr_particlew.py [options] <file>")
parser.add_option("--seek", type='float', default=0, help="seek percentage to start in log")
parser.add_option("-f", "--follow", action='store_true', default=False, help="ignore EOF")
(opts, args) = parser.parse_args()
#--- Parameters
n = 10000
gps_cov = 1000
state_cov = 10
meas = None
#--- End Parameters
dev = ublox.UBlox(args[0])
if opts.seek != 0:
dev.seek_percent(opts.seek)
satinfo = satelliteData.SatelliteData();
filt = None
def p_xt_xtp_mu(xtp):
'''Return mean of Gaussian PDF for state xt given x(t-1). Assume static receiver, Mean at old state'''
return xtp
def p_xt_xtp_R(xtp):
'''Return covariance of Gaussian PDF for state xt given x(t-1).'''
return numpy.diag([state_cov, state_cov, state_cov, state_cov / util.speedOfLight])
def p_yt_xt_mu(xt):
''' Return mean of Gaussian PDF for measurement yt given xt. Mean is at the ideal measurement'''
rxpos = util.PosVector(xt[0], xt[1], xt[2])
ideal = [0] * 32
for i in range(32):
if i in satinfo.satpos and i in satinfo.prCorrected:
ideal[i] = satinfo.satpos[i].distance(rxpos) + xt[3] * util.speedOfLight
#print(xt)
#print(numpy.array(ideal) - numpy.array(meas))
return numpy.array(ideal)
def p_yt_xt_R(xt):
''' Return covariance matric of Gaussian PDF for measurement yt given xt.
Covariance is related to signal quality, assumed independent for all sats'''
dia = [gps_cov] * 32
#for i in range(32):
# if i in satinfo.satpos and i in satinfo.prCorrected:
# dia[i] = gps_cov #10**(satinfo.raw.cno[i]/10)
return numpy.diag(dia)
def build_filter(info):
global filt
if filt is None:
est = positionEstimate.positionEstimate(satinfo)
if est is None:
# We use the least-squares method to bootstrap our one to avoid
# a requirement for mad particle space
return
print("RP" + str(est))
mean = numpy.array([est.X, est.Y, est.Z, est.extra])
cov = numpy.diag([100 * state_cov, 100 * state_cov, 100 * state_cov, 100 * state_cov / util.speedOfLight])
init_pdf = pybayes.pdfs.GaussPdf(mean, cov)
p_xt_xtp = pybayes.pdfs.GaussCPdf(4, 4, p_xt_xtp_mu, p_xt_xtp_R)
p_yt_xt = pybayes.pdfs.GaussCPdf(32, 4, p_yt_xt_mu, p_yt_xt_R)
filt = pybayes.filters.ParticleFilter(n, init_pdf, p_xt_xtp, p_yt_xt)
def do_filter(info):
global meas
if filt is None:
build_filter(info)
can_filter = False
meas = [0] * 32
for sv in info.prCorrected:
meas[sv] = info.prCorrected[sv]
if sv in satinfo.satpos:
can_filter = True
if can_filter:
#print("M:{}".format(meas))
filt.bayes(numpy.array(meas))
print(filt.posterior().mean(), filt.posterior().variance())
#---
while True:
msg = dev.receive_message(ignore_eof=opts.follow)
if msg is None:
break
try:
name = msg.name()
print name
except ublox.UBloxError as e:
continue
msg.unpack()
satinfo.add_message(msg)
if name == 'RXM_RAW':
# The measurements used are Hatch smoothed and with all corrections made that can be
# made without the state (or with a very rough estimate)
#for i in satinfo.prCorrected:
# print(satinfo.satpos[i].distance(satinfo.receiver_position) + util.speedOfLight * , satinfo.prCorrected[i])
do_filter(satinfo)