-
Notifications
You must be signed in to change notification settings - Fork 234
/
Copy pathensemble_image_client.py
executable file
·284 lines (248 loc) · 9.39 KB
/
ensemble_image_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python
# Copyright 2020-2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import argparse
import os
import sys
from builtins import range
import numpy as np
import tritonclient.grpc as grpcclient
import tritonclient.grpc.model_config_pb2 as model_config
import tritonclient.http as httpclient
from tritonclient.utils import InferenceServerException
FLAGS = None
def parse_model_grpc(model_metadata, model_config):
"""
Check the configuration of a model to make sure it meets the
requirements for an image classification network (as expected by
this client)
"""
if len(model_metadata.inputs) != 1:
raise Exception("expecting 1 input, got {}".format(len(model_metadata.inputs)))
if len(model_config.input) != 1:
raise Exception(
"expecting 1 input in model configuration, got {}".format(
len(model_config.input)
)
)
input_metadata = model_metadata.inputs[0]
output_metadata = model_metadata.outputs
return (input_metadata.name, output_metadata, model_config.max_batch_size)
def parse_model_http(model_metadata, model_config):
"""
Check the configuration of a model to make sure it meets the
requirements for an image classification network (as expected by
this client)
"""
if len(model_metadata["inputs"]) != 1:
raise Exception(
"expecting 1 input, got {}".format(len(model_metadata["inputs"]))
)
if len(model_config["input"]) != 1:
raise Exception(
"expecting 1 input in model configuration, got {}".format(
len(model_config["input"])
)
)
input_metadata = model_metadata["inputs"][0]
output_metadata = model_metadata["outputs"]
return (input_metadata["name"], output_metadata, model_config["max_batch_size"])
def postprocess(results, output_names, filenames, batch_size):
"""
Post-process results to show classifications.
"""
output_dict = {}
for output_name in output_names:
output_dict[output_name] = results.as_numpy(output_name)
if len(output_dict[output_name]) != batch_size:
raise Exception(
"expected {} results for output {}, got {}".format(
batch_size, output_name, len(output_dict[output_name])
)
)
for n, f in enumerate(filenames):
print('\n"{}":'.format(f))
for output_name in output_names:
print(" [{}]:".format(output_name))
for result in output_dict[output_name][n]:
if output_dict[output_name][n].dtype.type == np.object_:
cls = "".join(chr(x) for x in result).split(":")
else:
cls = result.split(":")
print(" {} ({}) = {}".format(cls[0], cls[1], cls[2]))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-v",
"--verbose",
action="store_true",
required=False,
default=False,
help="Enable verbose output",
)
parser.add_argument(
"-m",
"--model-name",
type=str,
required=False,
default="preprocess_inception_ensemble",
help="Name of model. Default is preprocess_inception_ensemble.",
)
parser.add_argument(
"-c",
"--classes",
type=int,
required=False,
default=1,
help="Number of class results to report. Default is 1.",
)
parser.add_argument(
"-u",
"--url",
type=str,
required=False,
default="localhost:8000",
help="Inference server URL. Default is localhost:8000.",
)
parser.add_argument(
"-i",
"--protocol",
type=str,
required=False,
default="HTTP",
help="Protocol (HTTP/gRPC) used to "
+ "communicate with inference service. Default is HTTP.",
)
parser.add_argument(
"image_filename",
type=str,
nargs="?",
default=None,
help="Input image / Input folder.",
)
FLAGS = parser.parse_args()
protocol = FLAGS.protocol.lower()
try:
if protocol == "grpc":
# Create gRPC client for communicating with the server
triton_client = grpcclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose
)
else:
# Create HTTP client for communicating with the server
triton_client = httpclient.InferenceServerClient(
url=FLAGS.url, verbose=FLAGS.verbose
)
except Exception as e:
print("client creation failed: " + str(e))
sys.exit(1)
model_name = FLAGS.model_name
# Make sure the model matches our requirements, and get some
# properties of the model that we need for preprocessing
try:
model_metadata = triton_client.get_model_metadata(model_name=model_name)
except InferenceServerException as e:
print("failed to retrieve the metadata: " + str(e))
sys.exit(1)
try:
model_config = triton_client.get_model_config(model_name=model_name)
except InferenceServerException as e:
print("failed to retrieve the config: " + str(e))
sys.exit(1)
if FLAGS.protocol.lower() == "grpc":
input_name, output_metadata, batch_size = parse_model_grpc(
model_metadata, model_config.config
)
else:
input_name, output_metadata, batch_size = parse_model_http(
model_metadata, model_config
)
filenames = []
if os.path.isdir(FLAGS.image_filename):
filenames = [
os.path.join(FLAGS.image_filename, f)
for f in os.listdir(FLAGS.image_filename)
if os.path.isfile(os.path.join(FLAGS.image_filename, f))
]
else:
filenames = [
FLAGS.image_filename,
]
filenames.sort()
# Set batch size to the smaller value of image size and max batch size
if len(filenames) <= batch_size:
batch_size = len(filenames)
else:
print(
"The number of images exceeds maximum batch size,"
"only the first {} images, sorted by name alphabetically,"
" will be processed".format(batch_size)
)
# Preprocess the images into input data according to model
# requirements
image_data = []
for idx in range(batch_size):
with open(filenames[idx], "rb") as fd:
image_data.append(np.array([fd.read()], dtype=bytes))
# Send requests of batch_size images.
input_filenames = []
repeated_image_data = []
for idx in range(batch_size):
input_filenames.append(filenames[idx])
repeated_image_data.append(image_data[idx])
batched_image_data = np.stack(repeated_image_data, axis=0)
# Set the input data
inputs = []
if FLAGS.protocol.lower() == "grpc":
inputs.append(
grpcclient.InferInput(input_name, batched_image_data.shape, "BYTES")
)
inputs[0].set_data_from_numpy(batched_image_data)
else:
inputs.append(
httpclient.InferInput(input_name, batched_image_data.shape, "BYTES")
)
inputs[0].set_data_from_numpy(batched_image_data, binary_data=True)
output_names = [
output.name if FLAGS.protocol.lower() == "grpc" else output["name"]
for output in output_metadata
]
outputs = []
for output_name in output_names:
if FLAGS.protocol.lower() == "grpc":
outputs.append(
grpcclient.InferRequestedOutput(output_name, class_count=FLAGS.classes)
)
else:
outputs.append(
httpclient.InferRequestedOutput(
output_name, binary_data=True, class_count=FLAGS.classes
)
)
# Send request
result = triton_client.infer(model_name, inputs, outputs=outputs)
postprocess(result, output_names, input_filenames, batch_size)
print("PASS")