Download links and data prep scripts for the XPRESS datasets.
pip3 install -r requirements.txt
Training raw: download
Training voxel labels: download
Validation raw: download
Test raw: download
The skeletons are stored as NetworkX graphs in .npz files. Please see the ../eval/eval.py script to see how to properly read these skeleton files.
Training skeletons: download
Validation skeletons: download
Note: the GT skeletons are only fully annotated for the inner 33um volume for training
and test
, but is the 23.1um for validation
. That is:
- ROI of raw for all three volumes are 39.6 x 39.6 x 39.6 um (1200 x 1200 x 1200 pix at 33nm resolution).
- ROI of GT skeletons for
training
/test
is the inner 33 x 33 x 33 um (1000 x 1000 x 1000 pix with an offset of 100 x 100 x 100 pix). - ROI of GT skeletons for
validation
is the inner 23.1 x 23.1 x 23.1 um (700 x 700 x 700 pix with an offset of 250 x 250 x 250 pix).
For high performance training in the baseline model, we will need to convert .h5 files to chunked .zarr files.
python3 convert_to_zarr_h5.py xpress-training-raw.h5 volumes/raw xpress-challenge.zarr volumes/training_raw
python3 convert_to_zarr_h5.py xpress-training-voxel-labels.h5 volumes/labels xpress-challenge.zarr volumes/training_gt_labels
python3 convert_to_zarr_h5.py xpress-validation-raw.h5 volumes/raw xpress-challenge.zarr volumes/validation_raw
python3 convert_to_zarr_h5.py xpress-test-raw.h5 volumes/raw xpress-challenge.zarr volumes/test_raw
If your workflow requires stack of 2D images, you'll need to extract them from the .h5 files. TODO: we may provide an example script later.
We'll use the neuroglancer
script adapted from https://github.com/funkelab/funlib.show.neuroglancer/blob/master/scripts/neuroglancer to visualize the Zarr dataset.
Training dataset: ./neuroglancer --file xpress-challenge.zarr --datasets volumes/training_raw volumes/training_gt_labels
Validation dataset: ./neuroglancer --file xpress-challenge.zarr --datasets volumes/validation_raw
Test dataset: ./neuroglancer --file xpress-challenge.zarr --datasets volumes/test_raw