Skip to content

Latest commit

 

History

History

data

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

Download links and data prep scripts for the XPRESS datasets.

Downloading datasets

Install dependencies for the below scripts

pip3 install -r requirements.txt

Download image data

Training raw: download

Training voxel labels: download

Validation raw: download

Test raw: download

Download ground-truth skeletons

The skeletons are stored as NetworkX graphs in .npz files. Please see the ../eval/eval.py script to see how to properly read these skeleton files.

Training skeletons: download

Validation skeletons: download

Note: the GT skeletons are only fully annotated for the inner 33um volume for training and test, but is the 23.1um for validation. That is:

  • ROI of raw for all three volumes are 39.6 x 39.6 x 39.6 um (1200 x 1200 x 1200 pix at 33nm resolution).
  • ROI of GT skeletons for training/test is the inner 33 x 33 x 33 um (1000 x 1000 x 1000 pix with an offset of 100 x 100 x 100 pix).
  • ROI of GT skeletons for validation is the inner 23.1 x 23.1 x 23.1 um (700 x 700 x 700 pix with an offset of 250 x 250 x 250 pix).

(Optional) Convert h5 files to Zarr

For high performance training in the baseline model, we will need to convert .h5 files to chunked .zarr files.

python3 convert_to_zarr_h5.py xpress-training-raw.h5 volumes/raw xpress-challenge.zarr volumes/training_raw
python3 convert_to_zarr_h5.py xpress-training-voxel-labels.h5 volumes/labels xpress-challenge.zarr volumes/training_gt_labels
python3 convert_to_zarr_h5.py xpress-validation-raw.h5 volumes/raw xpress-challenge.zarr volumes/validation_raw
python3 convert_to_zarr_h5.py xpress-test-raw.h5 volumes/raw xpress-challenge.zarr volumes/test_raw

(Optional) Convert h5 files to image stack

If your workflow requires stack of 2D images, you'll need to extract them from the .h5 files. TODO: we may provide an example script later.

Visualize downloaded data

We'll use the neuroglancer script adapted from https://github.com/funkelab/funlib.show.neuroglancer/blob/master/scripts/neuroglancer to visualize the Zarr dataset.

Training dataset: ./neuroglancer --file xpress-challenge.zarr --datasets volumes/training_raw volumes/training_gt_labels

Validation dataset: ./neuroglancer --file xpress-challenge.zarr --datasets volumes/validation_raw

Test dataset: ./neuroglancer --file xpress-challenge.zarr --datasets volumes/test_raw