forked from zalandoresearch/fashion-mnist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfashion-mnist-v2.py
101 lines (69 loc) · 2.93 KB
/
fashion-mnist-v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed May 9 15:57:43 2018
@author: epark
"""
from __future__ import print_function
import numpy as np
import tensorflow as tf
sess = tf.InteractiveSession()
#import utils.mnist_reader as mnist_reader
#X_train, y_train = mnist_reader.load_mnist('data/fashion', kind='train')
#X_test, y_test = mnist_reader.load_mnist('data/fashion', kind='t10k')
# import the fashion mnist data
from tensorflow.examples.tutorials.mnist import input_data
fashion_mnist = input_data.read_data_sets('data/fashion', one_hot=True)
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
def batch_norm(x, dim):
mean, variance = tf.nn.moments(x, [0])
return tf.nn.batch_normalization(x, mean, variance, tf.Variable(tf.zeros([dim])), tf.Variable(tf.ones([dim])), 1e-3)
# Initialize weights and biases
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
# Initialize the x and y values
x = tf.placeholder(tf.float32, shape=[None, 784])
y_ = tf.placeholder(tf.float32, shape=[None, 10])
x_image = tf.reshape(x, [-1,28,28,1])
# First convolution + maxpool
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# batch_norm
h_batch1 = batch_norm(h_pool1, 32)
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_batch1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# batch norm
h_batch2 = batch_norm(h_pool2, 64)
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_batch2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
#dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = fashion_mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g"%(i, train_accuracy))
print("test accuracy %g"%accuracy.eval({x: fashion_mnist.test.images, y_: fashion_mnist.test.labels, keep_prob: 1.0}))
train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})