-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain_qamc.py
113 lines (88 loc) · 4.42 KB
/
main_qamc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from lib import *
from dataset import Dataset_Base
from model import VIOLET_Base
from agent import Agent_Base
class Dataset_QAMC(Dataset_Base):
def __init__(self, args, split):
super().__init__(args)
self.img = pickle.load(open('./_data/img_%s.pkl'%(self.args['dataset']), 'rb'))
self.txt = json.load(open('./_data/txt_%s.json'%(self.args['task']), 'r'))[split]
def __len__(self):
return len(self.txt)
def __getitem__(self, idx):
item = self.txt[idx]
img = []
for b in self.img[item['video']]:
img.append(self.str2img(b).unsqueeze(0))
img = T.cat(img, dim=0)
txt, mask = [], []
for i in range(self.args['size_option']):
t, m = self.str2txt(item['question']+' '+item['option_%d'%(i)])
txt.append(t), mask.append(m)
txt, mask = np.array(txt, dtype=np.int64), np.array(mask, dtype=np.int64)
return img, txt, mask, item['answer']
class VIOLET_QAMC(VIOLET_Base):
def __init__(self):
super().__init__()
self.fc = T.nn.Sequential(*[T.nn.Dropout(0.1),
T.nn.Linear(768, 768*2), T.nn.ReLU(inplace=True),
T.nn.Linear(768*2, 1)])
def forward(self, img, txt, mask):
(_B, _T, _, _H, _W), (_, _O, _X) = img.shape, txt.shape
_h, _w = _H//32, _W//32
feat_img, mask_img, feat_txt, mask_txt = self.go_feat(img, txt.flatten(0, 1), mask.flatten(0, 1))
feat_img, mask_img = [feat_img.unsqueeze(1).expand([-1, _O, -1, -1]).flatten(0, 1),
mask_img.unsqueeze(1).expand([-1, _O, -1]).flatten(0, 1)]
out, _ = self.go_cross(feat_img, mask_img, feat_txt, mask_txt)
out = self.fc(out[:, (1+_h*_w)*_T, :]).squeeze().view([_B, _O])
return out
class Agent_QAMC(Agent_Base):
def __init__(self, args, model):
super().__init__(args, model)
def step(self, img, txt, mask, ans, is_train):
self.optzr.zero_grad()
with T.cuda.amp.autocast():
out = self.model(img.cuda(), txt.cuda(), mask.cuda())
ls = self.loss_func(out, ans.cuda())
if is_train==True:
self.scaler.scale(ls).backward()
self.scaler.step(self.optzr)
self.scaler.update()
return ls.item()
else:
out = T.argmax(out, dim=1)
ac = (out==ans.cuda()).float().mean().item()
return ac
def go_dl(self, dl, is_train):
ret = []
for img, txt, mask, ans in tqdm(dl, ascii=True):
ret.append(self.step(img, txt, mask, ans, is_train))
ret = float(np.average(ret))
return ret
if __name__=='__main__':
args = json.load(open(sys.argv[1], 'r'))
args['size_batch'] = args['size_batch']*T.cuda.device_count()
args['path_output'] = '_snapshot/_%s_%s'%(args['task'], datetime.now().strftime('%Y%m%d%H%M%S'))
os.makedirs(args['path_output'], exist_ok=True)
json.dump(args, open('%s/args.json'%(args['path_output']), 'w'), indent=2)
print(args)
dl_tr, dl_vl, dl_ts = [T.utils.data.DataLoader(Dataset_QAMC(args, split),
batch_size=args['size_batch'], shuffle=(split=='train'),
num_workers=32, pin_memory=True)\
for split in ['train', 'val', 'test']]
log = {'ls_tr': [], 'ac_vl': [], 'ac_ts': []}
json.dump(log, open('%s/log.json'%(args['path_output']), 'w'), indent=2)
model = T.nn.DataParallel(VIOLET_QAMC().cuda())
model.module.load_ckpt(args['path_ckpt'])
T.save(model.module.state_dict(), '%s/ckpt_violet_%s_0.pt'%(args['path_output'], args['task']))
agent = Agent_QAMC(args, model)
for e in tqdm(range(args['size_epoch']), ascii=True):
model.train()
ls_tr = agent.go_dl(dl_tr, True)
model.eval()
ac_vl = agent.go_dl(dl_vl, False)
ac_ts = agent.go_dl(dl_ts, False)
log['ls_tr'].append(ls_tr), log['ac_vl'].append(ac_vl), log['ac_ts'].append(ac_ts)
json.dump(log, open('%s/log.json'%(args['path_output']), 'w'), indent=2)
T.save(model.module.state_dict(), '%s/ckpt_violet_%s_%d.pt'%(args['path_output'], args['task'], e+1))
print('Ep %d: %.6f %.6f %.6f'%(e+1, ls_tr, ac_vl, ac_ts))