forked from lucky-bai/algomusic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathviterbi.py
97 lines (74 loc) · 3.32 KB
/
viterbi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from __future__ import division
import operator
import music21
from music21.chord import Chord
from music21.note import Note
from music21.interval import notesToChromatic
from chord_search import ALL_CHORDS, ALL_CHORDS_MIN, CHROMATIC_PENALTY, WHOLE_NOTE
# Initialization probabilities for major and minor chords
INIT_PROBS = [0, 1, 0, 0, 0, 0]
INIT_PROBS_MIN = [0, 0, 0, 0, 0, 1, 0]
def goodness(chord, bar_notes):
score = 0
for note1 in chord.notes[:-1]:
note1 = Note(note1)
for note2 in bar_notes:
chromatic_distance = notesToChromatic(note1, note2).semitones
# Normalize distance to be between 0 and 6
chromatic_distance = chromatic_distance % 12
if chromatic_distance > 6:
chromatic_distance = 12 - chromatic_distance
score += CHROMATIC_PENALTY[chromatic_distance]
return 1 / max(1, score)
def viterbi(states, obs, init_probs, trans_probs, emit_fn):
"""
:param states: the state space
:param obs: a list of observations
:param init_probs: a list of initial probabilities
:param trans_probs: transition probability matrix
:param emit_fn: emission probability function
"""
# V[i][j] stores probability of most likely path for the first j observations that have i as the final state
V = [[0 for _ in range(len(obs))] for _ in range(len(states))]
back_ptrs = [[0 for _ in range(len(obs))] for _ in range(len(states))]
# Initialization
for i in range(len(states)):
V[i][0] = init_probs[i] * emit_fn(states[i], obs[0])
back_ptrs[i][0] = 0
for i in range(1, len(obs)):
for j in range(len(states)):
V[j][i] = emit_fn(states[j], obs[i]) * max(V[k][i-1] * trans_probs[k][j] for k in range(len(states)))
# argmax
back_ptrs[j][i], _ = max(enumerate([V[k][i-1] * trans_probs[k][j] for k in range(len(states))]), key=operator.itemgetter(1))
z, max_prob = max(enumerate([V[k][-1] for k in range(len(states))]), key=operator.itemgetter(1))
path = [None for _ in range(len(obs))]
path[-1] = states[z]
for i in range(len(obs)-1, 0, -1):
z = back_ptrs[z][i]
path[i-1] = states[z]
return max_prob, path
def run(chords, melody, series):
all_notes = []
# Construct music21 notes, grouped into measures
for measure in filter(lambda x: isinstance(x, music21.stream.Measure), melody.elements):
measure_notes = []
for note in filter(lambda x: isinstance(x, music21.note.Note), measure.elements):
measure_notes.append(note)
all_notes.append(measure_notes)
init_probs = INIT_PROBS if series == 'major' else INIT_PROBS_MIN
# Build transition matrix where probability of self-transition is low
all_chords = ALL_CHORDS if series == 'major' else ALL_CHORDS_MIN
trans_probs = []
for i in range(len(all_chords)):
trans_prob = []
for j in range(len(all_chords)):
if i != j:
trans_prob.append(3)
else:
trans_prob.append(1)
s = sum(trans_prob)
trans_probs.append(map(lambda x: x / s, trans_prob))
prob, chord_seq = viterbi(all_chords, all_notes, init_probs, trans_probs, goodness)
for chord in chord_seq:
chords.append(Chord(chord.notes, duration=WHOLE_NOTE))
print(chord.name)