forked from joffery/M-ADA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_Digits.py
444 lines (389 loc) · 19.3 KB
/
main_Digits.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import argparse
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.nn as nn
from torch.autograd import Variable
from models.ada_conv import ConvNet, WAE, WAE_Cifar, Adversary, ResNet18, WRN_16_4
from torch.utils import model_zoo
from torchvision.models.resnet import BasicBlock, model_urls, Bottleneck
import numpy
import random
from metann import Learner
from utils.digits_process_dataset import *
from utils import utils
parser = argparse.ArgumentParser(description='Training on Digits')
parser.add_argument('--dataset', default='mnist', type=str,
help='dataset mnist or cifar10')
parser.add_argument('--num_iters', default=10001, type=int, # MNIST
# parser.add_argument('--num_iters', default=1671, type=int, # PACS
help='number of total iterations to run')
parser.add_argument('--start_iters', default=0, type=int,
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=32, type=int,
help='mini-batch size (default: 128)')
parser.add_argument('--lr', '--min-learning-rate', default=0.0001, type=float,
help='initial learning rate')
parser.add_argument('--lr_max', '--adv-learning-rate', default=1, type=float,
help='adversarial learning rate')
parser.add_argument('--gamma', default=1, type=float,
help='coefficient of constraint')
parser.add_argument('--beta', default=2000, type=float,
help='coefficient of relaxation')
parser.add_argument('--T_adv', default=25, type=int,
# parser.add_argument('--T_adv', default=5, type=int, # PACS
help='iterations for adversarial training')
parser.add_argument('--advstart_iter', default=0, type=int,
help='iterations for pre-train')
parser.add_argument('--K', default=3, type=int,
# parser.add_argument('--K', default=0, type=int,
help='number of augmented domains')
parser.add_argument('--T_min', default=100, type=int,
# parser.add_argument('--T_min', default=10, type=int,
help='intervals between domain augmentation')
parser.add_argument('--print-freq', '-p', default=1000, type=int,
# parser.add_argument('--print-freq', '-p', default=100, type=int,
help='print frequency (default: 10)')
parser.add_argument('--resume', default=None, type=str,
help='path to saved checkpoint (default: none)')
parser.add_argument('--name', default='Digits', type=str,
help='name of experiment')
parser.add_argument('--mode', default='train', type=str,
help='train or test')
parser.add_argument('--GPU_ID', "-g", default=0, type=int,
help='GPU_id')
parser.add_argument('--cov_weight', "-w", default=0.1, type=float,
help='neutron cov weight')
parser.add_argument('--activate_threshold', "-t", default=0.005, type=float,
help='neutron activation threshold')
parser.add_argument('--cover_ratio', "-r", default=1.0, type=float,
help='re-activation ratio')
parser.add_argument('--cov_mode', "-m", default=4, type=int,
help='coverage mode')
def main():
torch.autograd.set_detect_anomaly(True)
global args
args = parser.parse_args()
args.data_dir = os.path.expanduser('~/Datasets')
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152 on stackoverflow
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.GPU_ID)
exp_name = args.name
kwargs = {'num_workers': 4}
# create model, use Learner to wrap it
model = None
if args.dataset == 'mnist':
model = Learner(ConvNet())
elif args.dataset in ['photo']:
m = ResNet18()
m.load_state_dict(model_zoo.load_url(model_urls['resnet18']), strict=False)
model = Learner(m)
elif args.dataset in ['cifar10']:
model = Learner(WRN_16_4())
else:
print("Error")
model = model.cuda()
cudnn.benchmark = True
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['iter']
prec = checkpoint['prec']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (iter {})"
.format(args.resume, checkpoint['iter']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
if args.mode == 'train':
train(model, exp_name, kwargs)
evaluation(model, args.data_dir, args.batch_size, kwargs, sd=args.dataset)
else:
evaluation(model, args.data_dir, args.batch_size, kwargs, sd=args.dataset)
def get_lr_cifar(epoch, lr_decay_ratio):
"""
Ref (Origin WRN implementation):
https://github.com/szagoruyko/wide-residual-networks/blob/master/pytorch/main.py#L162
"""
if epoch in list(range(1,60)):
return lr_decay_ratio**0
elif epoch in list(range(60,120)):
return lr_decay_ratio**1
elif epoch in list(range(120,160)):
return lr_decay_ratio**2
elif epoch in list(range(160,201)):
return lr_decay_ratio**3
else:
return 0.0
def train(model, exp_name, kwargs):
print('Pre-train wae')
# construct train and val dataloader
# data shape: B X H X W X Channels
train_loader, val_loader, img_shape = construct_datasets(args.data_dir, args.batch_size, kwargs, args.dataset)
wae_input_dims = img_shape[1]*img_shape[2]*img_shape[3]
wae = None
z_dim = 20
if args.dataset in ['cifar10']:
wae = WAE_Cifar(wae_input_dims).cuda()
z_dim = 512
else:
wae = WAE(wae_input_dims).cuda()
wae_optimizer = torch.optim.Adam(wae.parameters(), lr=1e-3)
discriminator = Adversary(z_dim).cuda()
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=1e-3)
for epoch in range(1, 20 + 1):
wae_train(wae, discriminator, train_loader, wae_optimizer, d_optimizer, epoch, z_dim)
print('Training task model')
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
mse_loss = nn.MSELoss().cuda()
optimizer = None
if args.dataset in ['cifar10']:
optimizer = torch.optim.SGD(model.parameters(), weight_decay=.0005, momentum=.9, nesterov=True, lr=args.lr)
else:
optimizer = torch.optim.Adam(model.parameters(), args.lr)
# only augmented domains
only_virtual_test_images = []
only_virtual_test_labels = []
train_loader_iter = iter(train_loader)
# counter for domain augmentation
counter_k = 0
cur_epoch = 0
lr_decay_ratio = 0.2
for t in range(args.start_iters, args.num_iters):
if t % len(train_loader) == 0:
cur_epoch += 1
layer_neuron_activated_dict = {}
layer_neuron_activated_dict_mt = {}
cur_lr = args.lr
if cur_epoch in list(range(1,60)):
cur_lr = args.lr * lr_decay_ratio**0
elif cur_epoch in list(range(60,120)):
cur_lr = args.lr * lr_decay_ratio**1
elif cur_epoch in list(range(120,160)):
cur_lr = args.lr * lr_decay_ratio**2
elif cur_epoch in list(range(160,201)):
cur_lr = args.lr * lr_decay_ratio**3
else:
print("Wrong Epoch!")
for g in optimizer.param_groups:
g['lr'] = cur_lr
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
break_point = int((len(train_loader) - 1) / (counter_k + 1))
src_num = int(args.batch_size / (counter_k + 1))
aug_num = args.batch_size - src_num
# domain augmentation
if (t > args.advstart_iter) and ((t + 1 - args.advstart_iter) % args.T_min == 0) and (counter_k < args.K):
model.eval()
params = list(model.parameters())
virtual_test_images = []
virtual_test_labels = []
aug_start_time = time.time()
for i, (input_a, target_a) in enumerate(train_loader):
if i == break_point:
break
if counter_k > 0:
input_b, target_b = next(aug_loader_iter)
input_comb = torch.cat((input_a[:src_num].float(), input_b[:aug_num])).cuda(non_blocking=True)
target_comb = torch.cat((target_a[:src_num].long(), target_b[:aug_num])).cuda(non_blocking=True)
input_aug = input_comb.clone()
target_aug = target_comb.clone()
else:
input_a = input_a.cuda(non_blocking=True).float()
target_a = target_a.cuda(non_blocking=True).long()
input_aug = input_a.clone()
target_aug = target_a.clone()
input_aug = input_aug.cuda(non_blocking=True)
target_aug = target_aug.cuda(non_blocking=True)
aug_optimizer = torch.optim.SGD([input_aug.requires_grad_()], args.lr_max)
if counter_k == 0:
input_feat, output, _ = model.functional(params, False, input_a, return_feat=True)
recon_batch, _, = wae(input_a)
else:
input_feat, output, _ = model.functional(params, False, input_comb, return_feat=True)
recon_batch, _, = wae(input_comb)
# iteratively generate adversarial samples
for n in range(args.T_adv):
input_aug_feat, output_aug, _ = model.functional(params, False, input_aug, return_feat=True)
recon_batch_aug, _, = wae(input_aug)
# Constraint
constraint = mse_loss(input_feat, input_aug_feat)
ce_loss = criterion(output_aug, target_aug)
# Relaxation
relaxation = mse_loss(recon_batch, recon_batch_aug)
adv_loss = -(args.beta * relaxation + ce_loss - args.gamma * constraint)
aug_optimizer.zero_grad()
adv_loss.backward(retain_graph=True)
aug_optimizer.step()
virtual_test_images.append(input_aug.data.cpu().numpy())
virtual_test_labels.append(target_aug.data.cpu().numpy())
virtual_test_images, virtual_test_labels = asarray_and_reshape(virtual_test_images, virtual_test_labels, img_shape)
if counter_k == 0:
only_virtual_test_images = np.copy(virtual_test_images)
only_virtual_test_labels = np.copy(virtual_test_labels)
else:
only_virtual_test_images = np.concatenate([only_virtual_test_images, virtual_test_images])
only_virtual_test_labels = np.concatenate([only_virtual_test_labels, virtual_test_labels])
# dataloader for domain augmentation
aug_size = len(only_virtual_test_labels)
X_aug = torch.stack([torch.from_numpy(only_virtual_test_images[i]) for i in range(aug_size)])
y_aug = torch.stack([torch.from_numpy(np.asarray(i)) for i in only_virtual_test_labels])
aug_dataset = torch.utils.data.TensorDataset(X_aug, y_aug)
aug_loader = torch.utils.data.DataLoader(aug_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, **kwargs)
aug_loader_iter = iter(aug_loader)
# dataloader for the latest domain augmentation
new_aug_size = len(virtual_test_labels)
new_X_aug = torch.stack([torch.from_numpy(virtual_test_images[i]) for i in range(new_aug_size)])
new_y_aug = torch.stack([torch.from_numpy(np.asarray(i)) for i in virtual_test_labels])
new_aug_dataset = torch.utils.data.TensorDataset(new_X_aug, new_y_aug)
new_aug_loader = torch.utils.data.DataLoader(new_aug_dataset, batch_size=args.batch_size, shuffle=True, drop_last=True, **kwargs)
new_aug_loader_iter = iter(new_aug_loader)
# re-train a wae on the latest domain augmentation
if counter_k + 1 < args.K:
if args.dataset in ['cifar10']:
wae = WAE_Cifar(wae_input_dims).cuda()
else:
wae = WAE(wae_input_dims).cuda()
wae_optimizer = torch.optim.Adam(wae.parameters(), lr=1e-3)
discriminator = Adversary(z_dim).cuda()
d_optimizer = torch.optim.Adam(discriminator.parameters(), lr=1e-3)
for epoch in range(1, 20 + 1):
wae_train(wae, discriminator, new_aug_loader, wae_optimizer, d_optimizer, epoch, z_dim)
aug_end_time = time.time()
print('aug duration', (aug_end_time - aug_start_time) / 60)
counter_k += 1
model.train()
try:
input, target = next(train_loader_iter)
except:
train_loader_iter = iter(train_loader)
input, target = next(train_loader_iter)
input, target = input.cuda(non_blocking=True).float(), target.cuda(non_blocking=True).long()
params = list(model.parameters())
output, layer_output_dict = model.functional(params, True, input)
neuron_cover_str = "None"
if args.cov_mode == 1 or args.cov_mode == 4:
loss = criterion(output, target)
else:
### Neutron Cov Loss - BEGIN
layer_neuron_activated_dict, total_act_nron, total_nron = utils.update_coverage_v2(
layer_output_dict, args.activate_threshold, layer_neuron_activated_dict
)
neurons_2b_covered, all_not_covered = utils.neuron_to_cover(layer_neuron_activated_dict, args.cover_ratio)
neuron_coverage = utils.cal_neurons_cov_loss(layer_output_dict, neurons_2b_covered)
neuron_cover_str = "cov%d-act%d" % (len(neurons_2b_covered), total_act_nron)
loss = criterion(output, target) - args.cov_weight * neuron_coverage
### Neutron Cov Loss - END
neuron_cover_str_mt = 'None'
if counter_k == 0:
optimizer.zero_grad()
loss.backward(retain_graph=True)
else:
grads = torch.autograd.grad(loss, params, create_graph=True)
params = [(param - args.lr * grad).requires_grad_() for param, grad in zip(params, grads)]
try:
input_b, target_b = next(aug_loader_iter)
except:
aug_loader_iter = iter(aug_loader)
input_b, target_b = next(aug_loader_iter)
input_b, target_b = input_b.cuda(non_blocking=True), target_b.cuda(non_blocking=True).long()
output_b, layer_output_dict_mt = model.functional(params, True, input_b)
neuron_cover_str_mt = 'None'
if args.cov_mode == 2 or args.cov_mode == 4:
loss_b = criterion(output_b, target_b)
else:
### Neutron Cov Loss - BEGIN
layer_neuron_activated_dict_mt, total_act_nron_mt, total_nron_mt = utils.update_coverage_v2(
layer_output_dict_mt, args.activate_threshold, layer_neuron_activated_dict_mt
)
neurons_2b_covered_mt, all_not_covered_mt = utils.neuron_to_cover(layer_neuron_activated_dict_mt, args.cover_ratio)
neuron_coverage_mt = utils.cal_neurons_cov_loss(layer_output_dict_mt, neurons_2b_covered_mt)
neuron_cover_str_mt = "cov%d-act%d" % (len(neurons_2b_covered_mt), total_act_nron_mt)
loss_b = criterion(output_b, target_b) - args.cov_weight * neuron_coverage_mt
### Neutron Cov Loss - END
loss_combine = (loss + loss_b) / 2
optimizer.zero_grad()
loss_combine.backward()
cover_str = neuron_cover_str+'/'+neuron_cover_str_mt
optimizer.step()
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))[0]
losses.update(loss.data.item(), input.size(0))
top1.update(prec1.item(), input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
if t % args.print_freq == 0:
print(cover_str)
print('Iter: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(t, t, args.num_iters, batch_time=batch_time, loss=losses, top1=top1))
# evaluate on validation set per print_freq, compute acc on the whole val dataset
prec1 = validate(val_loader, model)
print("validation set acc", prec1)
save_checkpoint({
'iter': t + 1,
'state_dict': model.state_dict(),
'prec': prec1,
}, args.dataset, exp_name)
def wae_train(model, D, new_aug_loader, optimizer, d_optimizer, epoch, z_dim):
def sample_z(n_sample=None, dim=None, sigma=None, template=None):
if n_sample is None:
n_sample = 32
if dim is None:
dim = 20
if sigma is None:
sigma = z_sigma
z = sigma * Variable(template.data.new(template.size()).normal_())
return z
z_var = 1
z_sigma = math.sqrt(z_var)
ones = Variable(torch.ones(args.batch_size, 1)).cuda()
zeros = Variable(torch.zeros(args.batch_size, 1)).cuda()
param = 100
model.train()
train_loss = 0
input_dims = None
for batch_idx, (data, _) in enumerate(new_aug_loader):
input_dims = data.shape[1] * data.shape[2] * data.shape[3]
break
for batch_idx, (data, _) in enumerate(new_aug_loader):
input_comb = data.cuda(non_blocking=True).float()
optimizer.zero_grad()
recon_batch, z_tilde = model(input_comb)
z = sample_z(template=z_tilde, sigma=z_sigma, dim=z_dim)
log_p_z = log_density_igaussian(z, z_var).view(-1, 1)
D_z = D(z)
D_z_tilde = D(z_tilde)
D_loss = F.binary_cross_entropy_with_logits(D_z + log_p_z, ones) + \
F.binary_cross_entropy_with_logits(D_z_tilde + log_p_z, zeros)
total_D_loss = param * D_loss
d_optimizer.zero_grad()
total_D_loss.backward(retain_graph=True)
d_optimizer.step()
BCE = F.binary_cross_entropy(recon_batch, input_comb.reshape((recon_batch.shape)), reduction='sum')
Q_loss = F.binary_cross_entropy_with_logits(D_z_tilde + log_p_z, ones)
loss = BCE + param * Q_loss
loss.backward(retain_graph=True)
train_loss += loss.item()
optimizer.step()
if batch_idx % args.print_freq == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(new_aug_loader.dataset),
100. * batch_idx / len(new_aug_loader),
loss.item() / len(data)))
print('====> Epoch: {} Average loss: {:.4f}'.format(
epoch, train_loss / len(new_aug_loader.dataset)))
if __name__ == '__main__':
seed_val = 9963
print("Using seed: %d!" % seed_val)
torch.manual_seed(seed_val)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(seed_val)
random.seed(seed_val)
main()