This repository has been archived by the owner on Jun 28, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 638
/
Copy pathsample_players.py
289 lines (224 loc) · 9.21 KB
/
sample_players.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
"""This file contains a collection of player classes for comparison with your
own agent and example heuristic functions.
************************************************************************
*********** YOU DO NOT NEED TO MODIFY ANYTHING IN THIS FILE **********
************************************************************************
"""
from random import randint
def null_score(game, player):
"""This heuristic presumes no knowledge for non-terminal states, and
returns the same uninformative value for all other states.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : hashable
One of the objects registered by the game object as a valid player.
(i.e., `player` should be either game.__player_1__ or
game.__player_2__).
Returns
----------
float
The heuristic value of the current game state.
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
return 0.
def open_move_score(game, player):
"""The basic evaluation function described in lecture that outputs a score
equal to the number of moves open for your computer player on the board.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : hashable
One of the objects registered by the game object as a valid player.
(i.e., `player` should be either game.__player_1__ or
game.__player_2__).
Returns
----------
float
The heuristic value of the current game state
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
return float(len(game.get_legal_moves(player)))
def improved_score(game, player):
"""The "Improved" evaluation function discussed in lecture that outputs a
score equal to the difference in the number of moves available to the
two players.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : hashable
One of the objects registered by the game object as a valid player.
(i.e., `player` should be either game.__player_1__ or
game.__player_2__).
Returns
----------
float
The heuristic value of the current game state
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(game.get_opponent(player)))
return float(own_moves - opp_moves)
def center_score(game, player):
"""Outputs a score equal to square of the distance from the center of the
board to the position of the player.
This heuristic is only used by the autograder for testing.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
player : hashable
One of the objects registered by the game object as a valid player.
(i.e., `player` should be either game.__player_1__ or
game.__player_2__).
Returns
----------
float
The heuristic value of the current game state
"""
if game.is_loser(player):
return float("-inf")
if game.is_winner(player):
return float("inf")
w, h = game.width / 2., game.height / 2.
y, x = game.get_player_location(player)
return float((h - y)**2 + (w - x)**2)
class RandomPlayer():
"""Player that chooses a move randomly."""
def get_move(self, game, time_left):
"""Randomly select a move from the available legal moves.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
----------
(int, int)
A randomly selected legal move; may return (-1, -1) if there are
no available legal moves.
"""
legal_moves = game.get_legal_moves()
if not legal_moves:
return (-1, -1)
return legal_moves[randint(0, len(legal_moves) - 1)]
class GreedyPlayer():
"""Player that chooses next move to maximize heuristic score. This is
equivalent to a minimax search agent with a search depth of one.
"""
def __init__(self, score_fn=open_move_score):
self.score = score_fn
def get_move(self, game, time_left):
"""Select the move from the available legal moves with the highest
heuristic score.
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
----------
(int, int)
The move in the legal moves list with the highest heuristic score
for the current game state; may return (-1, -1) if there are no
legal moves.
"""
legal_moves = game.get_legal_moves()
if not legal_moves:
return (-1, -1)
_, move = max([(self.score(game.forecast_move(m), self), m) for m in legal_moves])
return move
class HumanPlayer():
"""Player that chooses a move according to user's input."""
def get_move(self, game, time_left):
"""
Select a move from the available legal moves based on user input at the
terminal.
**********************************************************************
NOTE: If testing with this player, remember to disable move timeout in
the call to `Board.play()`.
**********************************************************************
Parameters
----------
game : `isolation.Board`
An instance of `isolation.Board` encoding the current state of the
game (e.g., player locations and blocked cells).
time_left : callable
A function that returns the number of milliseconds left in the
current turn. Returning with any less than 0 ms remaining forfeits
the game.
Returns
----------
(int, int)
The move in the legal moves list selected by the user through the
terminal prompt; automatically return (-1, -1) if there are no
legal moves
"""
legal_moves = game.get_legal_moves()
if not legal_moves:
return (-1, -1)
print(game.to_string()) #display the board for the human player
print(('\t'.join(['[%d] %s' % (i, str(move)) for i, move in enumerate(legal_moves)])))
valid_choice = False
while not valid_choice:
try:
index = int(input('Select move index:'))
valid_choice = 0 <= index < len(legal_moves)
if not valid_choice:
print('Illegal move! Try again.')
except ValueError:
print('Invalid index! Try again.')
return legal_moves[index]
if __name__ == "__main__":
from isolation import Board
# create an isolation board (by default 7x7)
player1 = RandomPlayer()
player2 = GreedyPlayer()
game = Board(player1, player2)
# place player 1 on the board at row 2, column 3, then place player 2 on
# the board at row 0, column 5; display the resulting board state. Note
# that the .apply_move() method changes the calling object in-place.
game.apply_move((2, 3))
game.apply_move((0, 5))
print(game.to_string())
# players take turns moving on the board, so player1 should be next to move
assert(player1 == game.active_player)
# get a list of the legal moves available to the active player
print(game.get_legal_moves())
# get a successor of the current state by making a copy of the board and
# applying a move. Notice that this does NOT change the calling object
# (unlike .apply_move()).
new_game = game.forecast_move((1, 1))
assert(new_game.to_string() != game.to_string())
print("\nOld state:\n{}".format(game.to_string()))
print("\nNew state:\n{}".format(new_game.to_string()))
# play the remainder of the game automatically -- outcome can be "illegal
# move", "timeout", or "forfeit"
winner, history, outcome = game.play()
print("\nWinner: {}\nOutcome: {}".format(winner, outcome))
print(game.to_string())
print("Move history:\n{!s}".format(history))