-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample_predict.py
executable file
·94 lines (74 loc) · 3.87 KB
/
example_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#!/usr/bin/env python3
# coding=utf-8
#
# Copyright 2022 Institute of Formal and Applied Linguistics, Faculty of
# Mathematics and Physics, Charles University, Czech Republic.
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
"""
Example script to predict SynSem classes for lemmas in sentences.
"""
import datetime
import io
import os
import pickle
import re
import sys
import numpy as np
import sklearn.preprocessing
import pandas as pd
import tensorflow as tf
import transformers
import synsemclass_classifier_nn
if __name__ == "__main__":
import argparse
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=10, type=int, help="Batch size.")
parser.add_argument("--checkpoint_filename", default="checkpoint.h5", type=str, help="Checkpoint filename.")
parser.add_argument("--load_model", default=None, type=str, help="Load model from directory.")
parser.add_argument("--multilabel_nbest", default=None, type=int, help="Take N best classes from multilabel class prediction (exclusive with --multilabel_threshold).")
parser.add_argument("--multilabel_threshold", default=None, type=float, help="Threshold for multilabel class prediction (exclusive with --multilabel_nbest).")
parser.add_argument("--threads", default=1, type=int, help="Maximum number of threads to use.")
args=parser.parse_args()
# Set threads
tf.config.threading.set_inter_op_parallelism_threads(args.threads)
tf.config.threading.set_intra_op_parallelism_threads(args.threads)
# Read data
TESTDATA_STR="""
,synsemclass,synsemclass_id,lang,lemma,frame,index,sentence
13100,end (ev-w1142f2),vec00113,eng,expire,ev-w1245f1,5,"The offer is scheduled to ^ expire on Nov. 28, unless extended."
13101,end (ev-w1142f2),vec00113,eng,expire,ev-w1245f1,10,"Wasserstein Perella&Co. is the dealer-manager for the offer, which will ^ expire Nov. 29, unless extended ."
13103,end (ev-w1142f2),vec00113,eng,expire,ev-w1245f1,4,The current debt limit ^ expires Oct. 31.
"""
data = pd.read_csv(io.StringIO(TESTDATA_STR))
# Load model parameters
with open("{}/args.pickle".format(args.load_model), "rb") as pickle_file:
model_training_args = pickle.load(pickle_file)
# Read target (synsemclass_id) strings to integers encoder/decoder.
with open("{}/classes.pickle".format(args.load_model), "rb") as pickle_file:
le = pickle.load(pickle_file)
# Load the tokenizer
print("Loading tokenizer {}".format(model_training_args.bert), file=sys.stderr, flush=True)
tokenizer = transformers.AutoTokenizer.from_pretrained(model_training_args.bert)
# Create TF dataset as input to NN
inputs = tokenizer(data["sentence"].tolist())["input_ids"] # drop masks
inputs = tf.ragged.constant(inputs)
tf_dataset = tf.data.Dataset.from_tensor_slices((inputs))
tf_dataset = tf_dataset.apply(
tf.data.experimental.dense_to_ragged_batch(batch_size=args.batch_size))
# Instantiate and compile the model
model = synsemclass_classifier_nn.SynSemClassClassifierNN(multilabel=model_training_args.multilabel,
checkpoint_filename=args.checkpoint_filename)
model.compile(len(le.classes_), model_training_args)
model.load_checkpoint(args.load_model)
# Predict classes on development data
predicted_classes = model.predict(tf_dataset, threshold=args.multilabel_threshold, nbest=args.multilabel_nbest)
predicted_classes = le.inverse_transform(predicted_classes)
for i, row in data.iterrows():
if model_training_args.multilabel:
print("\t".join([",".join(predicted_classes[i]), row["sentence"]]))
else:
print("\t".join([predicted_classes[i], row["sentence"]]))