-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaws_model.py
214 lines (169 loc) · 9.27 KB
/
aws_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
"""Model for optimizing instance selection in aws ec2.
Generates and runs the model, using ortools linear solver,
and returns the value of the objective function and the solution values.
This model considers that all instances are in the same savings plan family/group,
so it is only possible to optmize one instance group at a time.
"""
from ortools.linear_solver import pywraplp
import copy
import logging
def optimize_model(t, demand, markets_data, savings_plan_data, savings_plan_duration):
"""Builds and runs the model.
Creates the objective function and four constraints. Adds them to the solver
and runs it. After the simulation, prints some stats of the simulation and returns
the results.
Equations format used in the model:
List of times (T) -> List of instances (I) -> List of markets (M)
1° element of each T: [[s_t, rs_t]] (active savings plan value, value of savings plans reserves made)
1° element of each I: [a_t,i,sp] (first market in every instance is the savings plan market)
[[[s_t, rs_t]],
[[a_t,i,sp], [a_t,i,m, r_t,i,m], [a_t,i,m, r_t,i,m]], i=0
[[a_t,i,sp], [a_t,i,m, r_t,i,m], [a_t,i,m, r_t,i,m]]], i=1
[... t=1
Args:
t: the length of the simulation (in hours).
demand: a matrix with the demand of each instance.
demand = [[1, 2, ...], i=0
[1, 2, ...], i=1
[1, 2, ...]] i=2
markets_data: for every market of every instance, values of hourly price (p_hr),
up front price (p_up) and reserve duration (y).
input_data = [[[p_hr, p_up, y], [p_hr, p_up, y]], i = 0
[[p_hr, p_up, y], [p_hr, p_up, y]]] i = 1
savings_plan_data: list with the savings plan hourly price (p_hr) for every instance.
input_sp = [p_sp_i0, p_sp_i1, p_sp_i2, ...]
y_sp: savings plan reserve duration.
All instances must have the same markets in markets_data.
All instances must have the savings plan values in savings_plan_data.
Returns:
A list with 2 elements. The first element is the value of the objective function, which
is the total cost of the simulation. The second element is the list of values in the simulation.
This list is composed by, for every hour, the number of active instances, number of reserves made,
active value of savings plan and value of savings plan reserves made. It follows the equations
format defined above.
If the solver does not find an optimal solution, returns an empty list.
"""
solver = pywraplp.Solver.CreateSolver('SCIP')
if not solver:
return
infinity = solver.infinity()
num_markets = len(markets_data[0])
num_instances = len(markets_data)
num_vars = ((2 * num_markets + 1) * num_instances + 2) * t
x = {}
for j in range(num_vars):
x[j] = solver.IntVar(0, infinity, 'x[%i]' % j)
logging.info('Number of variables = %d', solver.NumVariables())
# coefficientsBase is a list in the equations format with all values 0
coefficientsBase = create_coefficients_base(t, num_instances, num_markets)
# Adding constraints
logging.info('Generating constraint 1')
constraint1(solver, x, num_vars, demand, coefficientsBase)
logging.info('Generating constraint 2')
constraint2(solver, x, num_vars, coefficientsBase, markets_data)
logging.info('Generating constraint 3')
constraint3(solver, x, num_vars, coefficientsBase, savings_plan_data)
logging.info('Generating constraint 4')
constraint4(solver, x, num_vars, coefficientsBase, savings_plan_duration)
# Creating the objetive function
logging.info('Generating objective function')
obj_func = [0, 1 * savings_plan_duration] #savings plan coefficients (0 * s_t + 1 * rs_t * y_sp) - considers in the begining the total reserve cost
for instance in markets_data:
obj_func.append(0) #coefficient of number of active instances in savings plan (a_t,i,SP)
for market in instance: #market = [p_hr, p_up, y]
cr_im = market[0] * market[2] + market[1]
obj_func.append(0) #a_im * 0
obj_func.append(cr_im) #r_im * cr_im
obj_func = obj_func * t
objective = solver.Objective()
for j in range(num_vars):
objective.SetCoefficient(x[j], float(obj_func[j]))
objective.SetMinimization()
logging.info('Starting optimization')
status = solver.Solve()
logging.info('End of optimization')
if status == pywraplp.Solver.OPTIMAL:
logging.info('Objective value = %f', solver.Objective().Value())
logging.info('Problem solved in %f milliseconds', solver.wall_time())
logging.info('Problem solved in %d iterations', solver.iterations())
logging.info('Problem solved in %d branch-and-bound nodes', solver.nodes())
values = []
for j in range(num_vars):
values.append(x[j].solution_value())
return [solver.Objective().Value(), values]
else:
logging.error('The problem does not have an optimal solution')
return [] #the problem does not have an optimal solution
# Demand <= 1*a
def constraint1(solver, x, num_vars, demand, coefficients_base):
for i_time in range(len(coefficients_base)):
time = coefficients_base[i_time]
for i_instance in range(1, len(time)): #jumps savings plan coefficients
coefficients = copy.deepcopy(coefficients_base) #making a copy before altering the coefficients
coefficients[i_time][i_instance][0] = [1] # 1 * a_t,i,SP
for i_market in range(1, len(coefficients[i_time][i_instance])): #jumps savings plan market
coefficients[i_time][i_instance][i_market] = [1,0]
constraint_expr = change_coefficients_format(generate_array(coefficients), x, num_vars)
solver.Add(sum(constraint_expr) >= demand[i_instance - 1][i_time])
# a_t = sum(r_t)
def constraint2(solver, x, num_vars, coefficients_base, markets_data):
for i_time in range(len(coefficients_base)):
time = coefficients_base[i_time]
for i_instance in range(1, len(time)): #jumps savings plan coefficients
instance = time[i_instance]
for i_market in range(1, len(instance)): #jumps savings plan market
coefficients = copy.deepcopy(coefficients_base) #making a copy before altering the coefficients
coefficients[i_time][i_instance][i_market] = [1, -1]
y = markets_data[i_instance - 1][i_market - 1][2]
reserve_duration = y - 1
for i in range(i_time - 1, -1, -1):
if reserve_duration > 0:
coefficients[i][i_instance][i_market] = [0, -1]
reserve_duration -= 1
else: break
constraint_expr = change_coefficients_format(generate_array(coefficients), x, num_vars)
solver.Add(sum(constraint_expr) == 0)
def constraint3(solver, x, num_vars, coefficients_base, savings_plan_data):
for i_time in range(len(coefficients_base)):
coefficients = copy.deepcopy(coefficients_base) #making a copy before altering the coefficients
coefficients[i_time][0][0] = [-1, 0] #total sp active value in t
for i_instance in range(1, len(coefficients[i_time])): #pula os coef do SP
coefficients[i_time][i_instance][0][0] = float([savings_plan_data[i_instance - 1]][0])
constraint_expr = change_coefficients_format(generate_array(coefficients), x, num_vars)
solver.Add(sum(constraint_expr) <= 0)
def constraint4(solver, x, num_vars, coefficients_base, savings_plan_duration):
for i_time in range(len(coefficients_base)):
coefficients = copy.deepcopy(coefficients_base) #making a copy before altering the coefficients
coefficients[i_time][0][0] = [1, -1]
reserve_duration = savings_plan_duration - 1
for i in range(i_time - 1, -1, -1):
if reserve_duration > 0:
coefficients[i][0][0] = [0, -1]
reserve_duration -= 1
else: break
constraint_expr = change_coefficients_format(generate_array(coefficients), x, num_vars)
solver.Add(sum(constraint_expr) == 0)
def create_coefficients_base(t, num_instances, num_markets): #[[[[0,0], [0,0]], [[0,0], [0,0]]], [[[0,0], [0,0]], [[0,0], [0,0]]]] para t=2, i=2 e m=2
coefficients = []
for i_time in range(t):
time_coef = [[[0, 0]]] #savings plan coefficients (0 * s_t + 1 * rs_t)
for i_instance in range(num_instances):
instance_coef = [[0]] #coefficient of number of active instances in savings plan (a_t,i,SP)
for i_market in range(num_markets):
market_coef = [0, 0]
instance_coef.append(market_coef)
time_coef.append(instance_coef)
coefficients.append(time_coef)
return coefficients
def change_coefficients_format(coefficientes, x, num_vars):
constraint_expr = \
[coefficientes[j] * x[j] for j in range(num_vars)]
return constraint_expr
def generate_array(list):
array = []
for time in list:
for instance in time:
for market in instance:
for value in market:
array.append(value)
return array