-
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtrain.py
332 lines (276 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
import argparse
import os
import scipy.io
import torch.nn as nn
from utils.torch_utils import *
from utils.utils import *
torch.backends.cudnn.benchmark = True # unsuitable for multiscale
ONNX_EXPORT = False
pathd = "data/"
pathr = "results/"
labels = ["train", "validate", "test"]
torch.manual_seed(1)
def train(H, model, str, lr=0.001):
"""Trains a given model on provided data with specified hyperparameters and saves training results."""
data = "wavedata25ns.mat"
cuda = torch.cuda.is_available()
os.makedirs(f"{pathr}models", exist_ok=True)
name = f"{data[:-4]}{H[:]}{lr:g}lr{str}".replace(", ", ".").replace("[", "_").replace("]", "_")
print(f"Running {name}")
device = select_device()
if not os.path.isfile(pathd + data):
os.system(f"wget -P data/ https://storage.googleapis.com/ultralytics/{data}")
mat = scipy.io.loadmat(pathd + data)
x = mat["inputs"][:] # inputs (nx512) [waveform1 waveform2]
y = mat["outputs"][:, 0:2] # outputs (nx4) [position(mm), time(ns), PE, E(MeV)]
nz, nx = x.shape
ny = y.shape[1]
x, _, _ = normalize(x, 1) # normalize each input row
y, ymu, ys = normalize(y, 0) # normalize each output column
x, y = torch.Tensor(x), torch.Tensor(y)
x, y, xv, yv, xt, yt = splitdata(x, y, train=0.70, validate=0.15, test=0.15, shuffle=False)
# torch.nn.init.constant_(model.out.weight.data, ys.item(0))
# torch.nn.init.constant_(model.out.bias.data, ymu.item(0))
# ys = 1
if cuda:
x, xv, xt = x.to(device), xv.to(device), xt.to(device)
y, yv, yt = y.to(device), yv.to(device), yt.to(device)
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
model = model.to(device)
# Loss criteria
MSE = nn.MSELoss()
# Optimizer
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
# optimizer = torch.optim.SGD(model.parameters(), lr=lr, momentum=.9)
# Scheduler
stopper = patienceStopper(epochs=opt.epochs, patience=24, printerval=opt.printerval)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer, patience=20, factor=0.1, min_lr=1e-5, verbose=True
)
lossv = 1e6
bs = opt.batch_size
nb = int(np.ceil(x.shape[0] / bs))
L = np.full((opt.epochs, 3), np.nan)
model_info(model)
for i in range(opt.epochs):
scheduler.step(lossv)
# Train
model.train()
for bi in range(nb):
j = range(bi * bs, min((bi + 1) * bs, x.shape[0]))
if ONNX_EXPORT:
_ = torch.onnx._export(model, x, "model.onnx", verbose=True)
return
loss = MSE(model(x[j]), y[j])
L[i, 0] = loss.item() # train
# Zero gradients, backward pass, update parameters
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Test
model.eval()
with torch.no_grad():
yv_ = model(xv)
lossv = MSE(yv_, yv)
L[i, 1] = lossv.item() # validate
if i % opt.printerval == 0:
std = (yv_ - yv).std(0).detach().cpu().numpy() * ys
if stopper.step(lossv, model=None, metrics=std):
break
# Print and save final results
# torch.save(stopper.bestmodel.state_dict(), pathr + 'models/' + name + '.pt')
stopper.bestmodel.eval()
loss, std = np.zeros(3), np.zeros((3, ny))
for i, (xi, yi) in enumerate(((x, y), (xv, yv), (xt, yt))):
with torch.no_grad():
r = stopper.bestmodel(xi) - yi # residuals, ().detach?
loss[i] = (r**2).mean().cpu().item()
std[i] = r.std(0).cpu().numpy() * ys
print(f"{loss[i]:.5f} {std[i, :]} {labels[i]}")
scipy.io.savemat(pathr + name + ".mat", dict(bestepoch=stopper.bestloss, loss=loss, std=std, L=L, name=name))
# files.download(pathr + name + '.mat')
return np.concatenate(([stopper.bestloss], np.array(loss), np.array(std.ravel())))
# 400 5.1498e-05 0.023752 12.484 0.15728 # var 0
class WAVE(torch.nn.Module):
"""A neural network model for waveform data regression with three fully connected layers."""
def __init__(self, n=(512, 64, 8, 2)):
"""Initializes the WAVE model architecture with specified layer sizes."""
super().__init__()
self.fc0 = nn.Linear(n[0], n[1])
self.fc1 = nn.Linear(n[1], n[2])
self.fc2 = nn.Linear(n[2], n[3])
def forward(self, x): # x.shape = [bs, 512]
"""Performs a forward pass through the WAVE model transforming input x from shape [bs, 512] to [bs, 2]."""
x = torch.tanh(self.fc0(x)) # [bs, 64]
x = torch.tanh(self.fc1(x)) # [bs, 8]
return self.fc2(x) # [bs, 2]
# https://github.com/yunjey/pytorch-tutorial/tree/master/tutorials/02-intermediate
# 121 0.47059 0.0306 14.184 0.1608
class WAVE4(nn.Module):
"""Implements a convolutional neural network for waveform data processing with configurable output layers."""
def __init__(self, n_out=2):
"""Initializes the WAVE4 model with specified output layers and configurations for convolutional layers."""
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=(1, 9), stride=(1, 2), padding=(0, 4), bias=False),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.1),
)
# nn.MaxPool2d(kernel_size=(1, 2), stride=1))
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=(1, 9), stride=(1, 2), padding=(0, 4), bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.1),
)
# nn.MaxPool2d(kernel_size=(1, 2), stride=1))
self.layer3 = nn.Conv2d(64, n_out, kernel_size=(2, 64), stride=(1, 1), padding=(0, 0))
def forward(self, x): # x.shape = [bs, 512]
"""Forward pass for processing input tensor through convolutional layers and reshaping output for
classification.
"""
x = x.view((-1, 2, 256)) # [bs, 2, 256]
x = x.unsqueeze(1) # [bs, 1, 2, 256] = = [N, C, H, W]
x = self.layer1(x) # [bs, 32, 1, 128]
x = self.layer2(x) # [bs, 64, 1, 64]
x = self.layer3(x)
return x.reshape(x.size(0), -1) # [bs, 64*64]
# 65 4.22e-05 0.021527 11.883 0.14406
class WAVE3(nn.Module):
"""Implements a convolutional neural network for feature extraction and classification from waveform data."""
def __init__(self, n_out=2):
"""Initializes the WAVE3 class with neural network layers for feature extraction and classification in a
sequential manner.
"""
super().__init__()
n = 32
self.layer1 = nn.Sequential(
nn.Conv2d(in_channels=2, out_channels=n, kernel_size=(1, 33), stride=(1, 2), padding=(0, 16), bias=False),
nn.BatchNorm2d(n),
nn.LeakyReLU(0.1),
)
self.layer2 = nn.Sequential(
nn.Conv2d(
in_channels=n, out_channels=n * 2, kernel_size=(1, 17), stride=(1, 2), padding=(0, 8), bias=False
),
nn.BatchNorm2d(n * 2),
nn.LeakyReLU(0.1),
)
self.layer3 = nn.Sequential(
nn.Conv2d(
in_channels=n * 2, out_channels=n * 4, kernel_size=(1, 9), stride=(1, 2), padding=(0, 4), bias=False
),
nn.BatchNorm2d(n * 4),
nn.LeakyReLU(0.1),
)
self.layer4 = nn.Conv2d(n * 4, n_out, kernel_size=(1, 32), stride=1, padding=0)
def forward(self, x): # x.shape = [bs, 512]
"""Performs the forward pass for input tensor `x` through the defined neural network layers, reshaping as
necessary.
"""
x = x.view((-1, 2, 256)) # [bs, 2, 256]
x = x.unsqueeze(2) # [bs, 2, 1, 256] = [N, C, H, W]
x = self.layer1(x) # [bs, 32, 1, 128]
# print(x.shape)
x = self.layer2(x) # [bs, 64, 1, 64]
# print(x.shape)
x = self.layer3(x) # [bs, 128, 1, 32]
# print(x.shape)
x = self.layer4(x)
return x.reshape(x.size(0), -1) # [bs, 64*64]
# 121 2.6941e-05 0.021642 11.923 0.14201 # var 1
class WAVE2(nn.Module):
"""Implements the WAVE2 model for processing input tensors through convolutional layers for feature extraction."""
def __init__(self, n_out=2):
"""Initializes the WAVE2 model architecture components."""
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 32, kernel_size=(2, 30), stride=(1, 2), padding=(1, 15), bias=False),
nn.BatchNorm2d(32),
nn.LeakyReLU(0.1),
nn.MaxPool2d(kernel_size=(1, 2), stride=1),
)
self.layer2 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=(2, 30), stride=(1, 2), padding=(0, 15), bias=False),
nn.BatchNorm2d(64),
nn.LeakyReLU(0.1),
nn.MaxPool2d(kernel_size=(1, 2), stride=1),
)
self.layer3 = nn.Sequential(nn.Conv2d(64, n_out, kernel_size=(2, 64), stride=(1, 1), padding=(0, 0)))
def forward(self, x): # x.shape = [bs, 512]
"""Forward pass for processing input tensor x through sequential layers, reshaping as needed for the model."""
x = x.view((-1, 2, 256)) # [bs, 2, 256]
x = x.unsqueeze(1) # [bs, 1, 2, 256]
x = self.layer1(x) # [bs, 32, 1, 128]
x = self.layer2(x) # [bs, 64, 1, 64]
x = self.layer3(x)
return x.reshape(x.size(0), -1) # [bs, 64*64]
H = [512, 64, 8, 2]
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=5000, help="number of epochs")
parser.add_argument("--batch-size", type=int, default=2000, help="size of each image batch")
parser.add_argument("--printerval", type=int, default=1, help="print results interval")
parser.add_argument("--var", nargs="+", default=[3], help="debug list")
opt = parser.parse_args()
opt.var = [float(x) for x in opt.var]
print(opt, end="\n\n")
init_seeds()
if opt.var[0] == 0:
_ = train(H, model=WAVE(), str=".Tanh")
elif opt.var[0] == 2:
_ = train(H, model=WAVE2(), str=".Tanh")
elif opt.var[0] == 3:
_ = train(H, model=WAVE3(), str=".Tanh")
elif opt.var[0] == 4:
_ = train(H, model=WAVE4(), str=".Tanh")
# 100K SET ---------------------------------------------------------------------
# Model Summary: 8 layers, 33376 parameters, 33376 gradients
# epoch time loss metric(s)
# 0 0.23533 0.72525 57.944 4.6891
# 1000 6.1377 0.027707 13.409 0.23723
# 2000 6.1811 0.025165 12.82 0.19568
# 3000 6.1135 0.024321 12.614 0.18148
# 4000 6.1703 0.023974 12.528 0.17578
# 5000 6.0297 0.023792 12.48 0.17282
# 6000 6.044 0.023641 12.443 0.17017
# 7000 6.022 0.025316 12.86 0.16977
# 8000 6.0789 0.023559 12.424 0.16832
# 9000 6.0554 0.023912 12.464 0.16599
# 10000 6.0805 0.02347 12.403 0.16509
# 11000 6.1321 0.024346 12.579 0.16366
# 12000 6.0378 0.025261 12.618 0.16218
# 13000 6.003 0.023413 12.391 0.16071
# 14000 6.0259 0.023771 12.46 0.15963
# 15000 6.0809 0.023371 12.382 0.158
# 16000 6.0842 0.02339 12.389 0.15699
# 3000 Patience exceeded at epoch 16857.
# Finished 50000 epochs in 102.663s (487.032 epochs/s). Best results:
# 13856 5.1492 0.023221 12.391 0.16071
# 0.01641 [ 10.358 0.15294] train
# 0.02322 [ 12.34 0.15902] validate
# 0.02316 [ 12.328 0.15611] test
# BS 2K
# 100 Patience exceeded at epoch 510.
# Finished 1000 epochs in 27.223s (36.733 epochs/s). Best results:
# 409 5.7936e-05 0.02456 12.69 0.15899
# 0.01756 [ 10.706 0.15338] train
# 0.02456 [ 12.69 0.15899] validate
# 0.02457 [ 12.687 0.15632] test
# 400 5.1498e-05 0.023752 12.484 0.15728 # var 0
# 121 2.6941e-05 0.021642 11.923 0.14201 # var 1
# 10K TEST SET
# 3000 Patience exceeded at epoch 4162.
# Finished 50000 epochs in 8.108s (6166.670 epochs/s). Best results:
# 1161 0.0035503 0.035007 15.125 0.25265
# 0.01647 [ 10.276 0.2399] train
# 0.03501 [ 15.104 0.25241] validate
# 0.04057 [ 16.274 0.26408] test
# BASELINE TRAIN ON FIRST 10K
# 100 Patience exceeded at epoch 301.
# Finished 1000 epochs in 279.341s (3.580 epochs/s). Best results:
# 200 2.5511e-05 0.027798 13.435 0.21111
# 0.01846 [ 10.901 0.17024] train
# 0.02752 [ 13.41 0.18784] validate
# 0.03360 [ 14.818 0.19295] test