-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathfcn.py
164 lines (131 loc) · 7.62 KB
/
fcn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import shutil
import tensorflow as tf
import time
import numpy as np
import helper
from loss import logistic_loss
from model_utils import conv_layer
from model_utils import max_pool_layer
from model_utils import fully_collected_layer
from model_utils import upsample_layer
from model_utils import skip_layer_connection
from model_utils import preprocess
class FCN:
def __init__(self, input_shape, num_train_examples, viz_dir, batch_size=8, num_classes=2):
self.images_batch, self.labels_batch, self.images_viz, self.dropout, self.global_step = self._build_placeholders(
input_shape)
self.input_shape = input_shape
self.viz_dir = viz_dir
self.num_train_examples = num_train_examples
self.batch_size = batch_size
self.n_classes = num_classes
self.sess = tf.Session()
self.logits = self.build()
def build(self):
images = preprocess(self.images_batch)
conv1_1 = conv_layer(images, 'conv1_1_W', 'conv1_1_b', name='conv1_1')
conv1_2 = conv_layer(conv1_1, 'conv1_2_W', 'conv1_2_b', name='conv1_2')
pool1 = max_pool_layer(conv1_2, [1, 2, 2, 1], [1, 2, 2, 1], name='pool1')
conv2_1 = conv_layer(pool1, 'conv2_1_W', 'conv2_1_b', name='conv2_1')
conv2_2 = conv_layer(conv2_1, 'conv2_2_W', 'conv2_2_b', name='conv2_2')
pool2 = max_pool_layer(conv2_2, [1, 2, 2, 1], [1, 2, 2, 1], name='pool2')
conv3_1 = conv_layer(pool2, 'conv3_1_W', 'conv3_1_b', name='conv3_1')
conv3_2 = conv_layer(conv3_1, 'conv3_2_W', 'conv3_2_b', name='conv3_2')
conv3_3 = conv_layer(conv3_2, 'conv3_3_W', 'conv3_3_b', name='conv3_3')
pool3 = max_pool_layer(conv3_3, [1, 2, 2, 1], [1, 2, 2, 1], name='pool3')
conv4_1 = conv_layer(pool3, 'conv4_1_W', 'conv4_1_b', name='conv4_1')
conv4_2 = conv_layer(conv4_1, 'conv4_2_W', 'conv4_2_b', name='conv4_2')
conv4_3 = conv_layer(conv4_2, 'conv4_3_W', 'conv4_3_b', name='conv4_3')
pool4 = max_pool_layer(conv4_3, [1, 2, 2, 1], [1, 2, 2, 1], name='pool4')
conv5_1 = conv_layer(pool4, 'conv5_1_W', 'conv5_1_b', name='conv5_1')
conv5_2 = conv_layer(conv5_1, 'conv5_2_W', 'conv5_2_b', name='conv5_2')
conv5_3 = conv_layer(conv5_2, 'conv5_3_W', 'conv5_3_b', name='conv5_3')
pool5 = max_pool_layer(conv5_3, [1, 2, 2, 1], [1, 2, 2, 1], name='pool5')
fc_1 = fully_collected_layer(pool5, 'fc_1', self.dropout)
fc_2 = fully_collected_layer(fc_1, 'fc_2', self.dropout)
fc_3 = fully_collected_layer(fc_2, 'fc_3', self.dropout)
# New we start upsampling and skip layer connections.
img_shape = tf.shape(self.images_batch)
dconv3_shape = tf.stack([img_shape[0], img_shape[1], img_shape[2], self.n_classes])
upsample_1 = upsample_layer(fc_3, dconv3_shape, self.n_classes, 'upsample_1', 32)
skip_1 = skip_layer_connection(pool4, 'skip_1', 512, stddev=0.00001)
upsample_2 = upsample_layer(skip_1, dconv3_shape, self.n_classes, 'upsample_2', 16)
skip_2 = skip_layer_connection(pool3, 'skip_2', 256, stddev=0.0001)
upsample_3 = upsample_layer(skip_2, dconv3_shape, self.n_classes, 'upsample_3', 8)
logit = tf.add(upsample_3, tf.add(2 * upsample_2, 4 * upsample_1))
return logit
def optimize(self, batch_generator, learning_rate=1e-5, keep_prob=0.75, num_epochs=1):
loss = logistic_loss(logits=self.logits, labels=self.labels_batch, n_classes=self.n_classes)
summary_op = self._build_summary(loss=loss)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss, global_step=self.global_step)
validation_img_summary_op = tf.summary.image('validation_img', self.images_viz)
self.sess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
# to visualize using TensorBoard
writer = tf.summary.FileWriter('./graphs/kitti/', self.sess.graph)
ckpt = tf.train.get_checkpoint_state(os.path.dirname('./checkpoints/kitti/checkpoint'))
if ckpt and ckpt.model_checkpoint_path:
print('Graph is available in hard disk. Hence, loading it.')
saver.restore(self.sess, ckpt.model_checkpoint_path)
initial_step = self.sess.run(self.global_step)
num_batches = int(self.num_train_examples / self.batch_size)
for itr in range(initial_step, num_batches * num_epochs):
image, gt_image = next(batch_generator(self.batch_size))
_, loss_val, summary = self.sess.run([optimizer, loss, summary_op],
feed_dict={self.images_batch: image,
self.labels_batch: gt_image,
self.dropout: keep_prob})
writer.add_summary(summary, global_step=itr)
if (itr < 10) or (itr < 100 and itr % 10 == 0) or \
(itr < 1000 and itr % 100 == 0) or (itr >= 1000 and itr % 200 == 0):
epoch_no = int(itr / num_batches)
print('epoch: {0:>3d} iter: {1:>4d} loss: {2:>8.4e}'.format(epoch_no, itr, loss_val))
if itr % 10 == 0:
viz_images = self.training_visulize()
tt = self.sess.run([validation_img_summary_op], feed_dict={self.images_viz: viz_images})
writer.add_summary(tt[0], itr)
if ((itr + 1) % (num_batches * 20) == 0) or (itr == num_batches * num_epochs):
print('At iteration: {} save a checkpoint'.format(itr))
saver.save(self.sess, './checkpoints/kitti/state', itr)
def inference(self, runs_dirs, data_dirs):
reshape_logits = tf.reshape(self.logits, (-1, self.n_classes))
helper.save_inference_samples(runs_dirs, data_dirs, self.sess, self.input_shape, reshape_logits, self.dropout,
self.images_batch)
def close_session(self):
self.sess.close()
def training_visulize(self):
reshape_logits = tf.reshape(self.logits, (-1, self.n_classes))
viz_images = []
img_output = helper.gen_test_output(self.sess, reshape_logits, self.dropout, self.images_batch, self.viz_dir,
self.input_shape)
for _, ouput in img_output:
viz_images.append(ouput)
return np.array(viz_images)
@staticmethod
def _build_placeholders(shape):
with tf.name_scope('data'):
X = tf.placeholder(tf.float32, [None, shape[0], shape[1], 3], name='X_placeholder')
Y = tf.placeholder(tf.float32, [None, shape[0], shape[1], 2], name='Y_placeholder')
X_viz = tf.placeholder(tf.float32, [None, shape[0], shape[1], 3], name='X_valid_placeholder')
dropout = tf.placeholder(tf.float32, name='dropout')
global_step = tf.Variable(0, dtype=tf.int32, trainable=False, name='global_step')
return X, Y, X_viz, dropout, global_step
@staticmethod
def _build_summary(loss):
with tf.name_scope('summaries'):
tf.summary.scalar('loss', loss)
tf.summary.histogram('histogram loss', loss)
return tf.summary.merge_all()
if __name__ == '__main__':
num_classes = 2
images_per_batch = 8
data_dir = './data'
runs_dir = './runs'
viz_dir = './data/data_road/validating'
input_size = (160, 576)
num_train_examples = 289
get_batches_fn = helper.gen_batch_function(os.path.join(data_dir, 'data_road/training'), input_size)
fc_network = FCN(input_size, num_train_examples, viz_dir, images_per_batch, num_classes)
fc_network.optimize(get_batches_fn, num_epochs=25)
fc_network.inference(runs_dir, data_dir)