-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProblem_43.java
47 lines (42 loc) · 1.62 KB
/
Problem_43.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import java.util.ArrayList;
import java.util.Collections;
public class Problem_43 {
/* The number, 1406357289, is a 0 to 9 pandigital number because it is made up of each of the digits
* 0 to 9 in some order, but it also has a rather interesting sub-string divisibility property.
*
* Let d1 be the 1st digit, d2 be the 2nd digit, and so on. In this way, we note the following:
*
* d2d3d4=406 is divisible by 2 d3d4d5=063 is divisible by 3 d4d5d6=635 is divisible by 5 d5d6d7=357
* is divisible by 7 d6d7d8=572 is divisible by 11 d7d8d9=728 is divisible by 13 d8d9d10=289 is
* divisible by 17 Find the sum of all 0 to 9 pandigital numbers with this property. */
public static void main(String[] args) {
String num = "0987654321";
long answer = 0;
int[] divisors = {2, 3, 5, 7, 11, 13, 17};
for (int i = 0;i < Funcs.factorial(11).intValue();i++) {
boolean ok = true;
num = Funcs.nextPermutation(num);
for (int j = 2;j < 9;j++) {
String d = "";
for (int k = j;k < j + 3;k++) {
if (num.startsWith("0")) break;
d += num.substring(k - 1, k);
}
if (!d.equals("") && Integer.parseInt(d) % divisors[j-2] != 0) ok = false;
}
if (ok) answer += Long.parseLong(num);
}
System.out.println(answer);
}
public static boolean isPandigital(String num) {
if (num.length() != 10) return false;
ArrayList<String> digits = new ArrayList<String>();
Collections.addAll(digits, num.split(""));
digits.remove(0);
for (int i = 0;i < 10;i++) {
if (!digits.contains(String.valueOf(i))) return false;
digits.remove(digits.indexOf(String.valueOf(i)));
}
return digits.size() == 0;
}
}