-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
48 lines (36 loc) · 1.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn as nn
import torchvision
import torchvision.models as models
# debugging
from PIL import Image
import torchvision.transforms as transforms
class Image_Similarity(nn.Module):
def __init__(self):
super(Image_Similarity, self).__init__()
self.layer1 = nn.Sequential(*(list(models.vgg16(pretrained=True).children())[0:1]))
self.layer2 = nn.AdaptiveMaxPool2d(output_size=(2, 1))
def forward(self, x):
result = self.layer1(x.unsqueeze(0))
result = self.layer2(torch.squeeze(result))
return result
# debug
if __name__ == '__main__':
cuda = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5))
])
image = Image.open('../../cat.jpeg')
image = transform(image).to(cuda)
#print(image)
img_sim = Image_Similarity().to(cuda)
result = img_sim.forward(image)
result = result.view(-1, 512 * 2* 1 ).cpu()
result = result.squeeze(0).detach().numpy()
print('result: ', result)
print('result_shape: ', result.shape)
# model save
# print("model save")
# torch.save(img_sim.state_dict(), '../My_model/New_Vgg_512.pt')