forked from bgshih/aster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
92 lines (72 loc) · 3.06 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import logging
import tensorflow as tf
from PIL import Image
from google.protobuf import text_format
import numpy as np
from aster.protos import pipeline_pb2
from aster.builders import model_builder
# supress TF logging duplicates
logging.getLogger('tensorflow').propagate = False
tf.logging.set_verbosity(tf.logging.INFO)
logging.basicConfig(level=logging.INFO)
flags = tf.app.flags
flags.DEFINE_string('exp_dir', 'aster/experiments/demo/',
'Directory containing config, training log and evaluations')
flags.DEFINE_string('input_image', 'aster/data/demo.jpg', 'Demo image')
FLAGS = flags.FLAGS
def get_configs_from_exp_dir():
pipeline_config_path = os.path.join(FLAGS.exp_dir, 'config/trainval.prototxt')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
with tf.gfile.GFile(pipeline_config_path, 'r') as f:
text_format.Merge(f.read(), pipeline_config)
model_config = pipeline_config.model
eval_config = pipeline_config.eval_config
input_config = pipeline_config.eval_input_reader
return model_config, eval_config, input_config
def main(_):
checkpoint_dir = os.path.join(FLAGS.exp_dir, 'log')
# eval_dir = os.path.join(FLAGS.exp_dir, 'log/eval')
model_config, _, _ = get_configs_from_exp_dir()
model = model_builder.build(model_config, is_training=False)
input_image_str_tensor = tf.placeholder(
dtype=tf.string,
shape=[])
input_image_tensor = tf.image.decode_jpeg(
input_image_str_tensor,
channels=3,
)
resized_image_tensor = tf.image.resize_images(
tf.to_float(input_image_tensor),
[64, 256])
predictions_dict = model.predict(tf.expand_dims(resized_image_tensor, 0))
recognitions = model.postprocess(predictions_dict)
recognition_text = recognitions['text'][0]
control_points = predictions_dict['control_points'],
rectified_images = predictions_dict['rectified_images']
saver = tf.train.Saver(tf.global_variables())
checkpoint = os.path.join(FLAGS.exp_dir, 'log/model.ckpt')
fetches = {
'original_image': input_image_tensor,
'recognition_text': recognition_text,
'control_points': predictions_dict['control_points'],
'rectified_images': predictions_dict['rectified_images'],
}
with open(FLAGS.input_image, 'rb') as f:
input_image_str = f.read()
with tf.Session() as sess:
sess.run([
tf.global_variables_initializer(),
tf.local_variables_initializer(),
tf.tables_initializer()])
saver.restore(sess, checkpoint)
sess_outputs = sess.run(fetches, feed_dict={input_image_str_tensor: input_image_str})
print('Recognized text: {}'.format(sess_outputs['recognition_text'].decode('utf-8')))
rectified_image = sess_outputs['rectified_images'][0]
rectified_image_pil = Image.fromarray((128 * (rectified_image + 1.0)).astype(np.uint8))
input_image_dir = os.path.dirname(FLAGS.input_image)
rectified_image_save_path = os.path.join(input_image_dir, 'rectified_image.jpg')
rectified_image_pil.save(rectified_image_save_path)
print('Rectified image saved to {}'.format(rectified_image_save_path))
if __name__ == '__main__':
tf.app.run()