-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnormalization-comparison.R
81 lines (56 loc) · 2.57 KB
/
normalization-comparison.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Normalization method comparison and qq plots
library("ggplot2")
library("gridExtra")
thm = theme_minimal() + theme(text = element_text(size = 16))
res = seq(0,1,by=.001) # resolution variable
# Minmax normalization
minmax = function(x) {
xprime = (x-min(x)) / ( max(x) - min(x) )
}
pl = function(df, dfn, dfs, dfm) {
plots = list()
## Distribution plot
plots[[1]] = ggplot(df, aes(x=val, group=samp, color=samp)) + geom_density() + thm + ggtitle("Raw")
## QQ plot
plots[[5]] = ggplot() + geom_point(aes(x = quantile(d1, res), y = quantile(d2, res)), alpha=.6) + geom_abline(slope=1,intercept = 0) + thm + ggtitle("QQ Raw")
## Dist after snorm
plots[[2]] = ggplot(dfs, aes(x=val, group=samp, color=samp)) + geom_density() + thm + ggtitle("Standard")
plots[[6]] = ggplot() + geom_point(aes(x = quantile(d1s, res), y = quantile(d2s, res))) + theme_minimal() + theme(text = element_text(size = 16)) + geom_abline(slope=1,intercept = 0) + ggtitle("QQ Standard")
## mmnorm
plots[[3]] = ggplot(dfm, aes(x=val, group=samp, color=samp)) + geom_density() + thm + ggtitle("Minmax")
plots[[7]] =ggplot() + geom_point(aes(x = quantile(d1m, res), y = quantile(d2m, res))) + theme_minimal() + theme(text = element_text(size = 16)) + geom_abline(slope=1,intercept = 0) + ggtitle("QQ Minmax")
## qnorm
plots[[4]] = ggplot(dfn, aes(x=val, group=samp, color=samp, linetype=samp)) + geom_density() + thm + ggtitle("Quantile")
plots[[8]] = ggplot() + geom_point(aes(x = quantile(d1n, res), y = quantile(d2n, res))) + theme_minimal() + theme(text = element_text(size = 16)) + geom_abline(slope=1,intercept = 0) + ggtitle("QQ Quantile")
plots
}
# Choose a set of d1 and d2 to compare
d1 = rexp(5000, 2)
d2 = rexp(5000, 4)
d1 = rnorm(5000, 3, 1)
d2 = rnorm(5000, 3, 2)
d1 = c(rnorm(2000, 2, 1), rnorm(3000, 6, 2))
d2 = rnorm(5000, 3, 2)
d1 = c(rnorm(4995, 3, 2), rnorm(5, 35, 1))
d2 = rnorm(5000, 3, 2)
d1 = rnorm(5000, 3, 4)
d2 = rexp(5000, 3, 2)
d1 = rbinom(5000, 30, .5)
d2 = rpois(5000, 15)
df = data.frame(val=c(d1, d2), samp=factor(rep(c(1,2), each=5000)))
# Quantile normalization
R = apply(cbind(sort(d1),sort(d2)), 1, mean)
d1n = R[rank(d1)] # d1 normalized
d2n = R[rank(d2)] # d2 normalized
dfn = data.frame(val=c(d1n, d2n), samp=factor(rep(c(1,2), each=5000)))
# Standard normalization
d1s = scale(d1)
d2s = scale(d2)
dfs = data.frame(val=c(d1s, d2s), samp=factor(rep(c(1,2), each=5000)))
# Minmax normalization
d1m = minmax(d1)
d2m = minmax(d2)
dfm = data.frame(val=c(d1m, d2m), samp=factor(rep(c(1,2), each=5000)))
# Plot
p = pl(df, dfn, dfs, dfm)
do.call(function(...) grid.arrange(..., ncol=4), p)