-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathenergy_prediction.py
138 lines (110 loc) · 4.95 KB
/
energy_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
import pandas as pd
import sys
from sklearn.kernel_ridge import KernelRidge
from sklearn.ensemble import ExtraTreesClassifier
from feature_vector import gen_test, gen_train
from sklearn.feature_selection import VarianceThreshold
from sklearn import preprocessing
def read_data(cont_name, disc_name):
cdata = pd.read_csv(cont_name, index_col=0)
ddata = pd.read_csv(disc_name, index_col=0)
Xc = cdata[cdata.columns[0:-2]]
Xd = ddata[ddata.columns[0:-2]]
y = cdata[cdata.columns[-2]]
yl = y.copy()
y2 = cdata[cdata.columns[-1]]
# label the instance
# Energy above 40 meV is considered to be unstable
y[y <= 40] = 1
y[y > 40] = 0
return Xc, Xd, y, yl, y2
def data_process(Xc, Xd, Xc_model, Xd_model):
p = 0.00
sel = VarianceThreshold()
sel.fit(Xc_model)
Xc1 = Xc.loc[:, sel.variances_ > p * (1 - p)]
sel.fit(Xd_model)
Xd1 = Xd.loc[:, sel.variances_ > p * (1 - p)]
# print('Removed {} feature from {} continuous features'.format(Xc.shape[1] - Xc1.shape[1], Xc.shape[1]))
# print('Removed {} feature from {} discrete features'.format(Xd.shape[1] - Xd1.shape[1], Xd.shape[1]))
X_total = pd.concat([Xc1, Xd1], axis=1)
return X_total
def data_scale(X_total, X_total_model):
scaler = preprocessing.StandardScaler().fit(X_total_model)
feature_names = list(X_total)
X_scaled = scaler.transform(X_total)
return pd.DataFrame(X_scaled,columns=feature_names)
def select_features(index_file, select_n, X_total):
indices_data = pd.read_csv(index_file, names=['order'])
indices = np.array(indices_data['order'].tolist())
selected = indices[:select_n]
X_features = X_total.ix[:, selected]
return X_features
def classification(X_scale, X_scale_test, y):
clf = ExtraTreesClassifier(criterion='entropy', bootstrap=False, max_leaf_nodes=None,
min_impurity_split=0.1, max_features=43, class_weight='balanced',
min_samples_split=5, min_samples_leaf=1, max_depth=18, n_estimators=115)
X_features1 = select_features('RFE_clf_indices.txt', 70, X_scale)
X_features_test1 = select_features('RFE_clf_indices.txt', 70, X_scale_test)
clf.fit(X_features1, y)
stability_predict = clf.predict(X_features_test1)
clf_result = pd.DataFrame(stability_predict, columns=['predicted stability'])
return clf_result
def cut_highEs(X_features, yl, ye):
# remove outliers
X_s = X_features.loc[ye < 400]
yl_s = yl[ye < 400]
return X_s, yl_s
def reg_EaH(X_scale, X_scale_test, ye):
reg = KernelRidge(kernel='rbf', alpha=0.007, gamma=0.007)
X_features2 = select_features('RFE_eah_indices.txt', 70, X_scale)
X_features_test2 = select_features('RFE_eah_indices.txt', 70, X_scale_test)
X_s, ye_s = cut_highEs(X_features2, ye, ye)
reg.fit(X_s, ye_s)
y_predict = reg.predict(X_features_test2)
EaH_predict = pd.DataFrame(y_predict, columns=['predicted Energy above hull'])
return EaH_predict
def reg_FE(X_scale, X_scale_test, yf, ye):
reg = KernelRidge(kernel='rbf', alpha=0.00464, gamma=0.0215)
X_features3 = select_features('stability_fe_indices.txt', 20, X_scale)
X_features_test3 = select_features('stability_fe_indices.txt', 20, X_scale_test)
X_s, yf_s = cut_highEs(X_features3, yf, ye)
reg.fit(X_s, yf_s)
y_predict = reg.predict(X_features_test3)
FE_predict = pd.DataFrame(y_predict, columns=['predicted Formation Energy'])
return FE_predict
def write_result(testfile, output, clf_result, EaH_predict, FE_predict):
test_data = pd.read_excel(testfile)
raw_composition = test_data[['Material Composition', 'A site #1', 'A site #2',
'A site #3', 'B site #1', 'B site #2', 'B site #3',
'X site', 'Number of elements']]
result = pd.concat([raw_composition, clf_result, EaH_predict, FE_predict], axis=1)
result.to_excel(output, index=None)
def wrap_data(trainfile, testfile, id=0):
gen_train(trainfile, id)
gen_test(testfile, id)
ctrain = 'c_{}_train.csv'.format(id)
ctest = 'c_{}_test.csv'.format(id)
dtrain = 'd_{}_train.csv'.format(id)
dtest = 'd_{}_test.csv'.format(id)
Xc, Xd, y, ye, yf = read_data(ctrain, dtrain)
X_total = data_process(Xc, Xd, Xc, Xd)
X_scale = data_scale(X_total, X_total)
Xc_test, Xd_test, y_test, ye_test, yf_test = read_data(ctest, dtest)
X_total_test = data_process(Xc_test, Xd_test, Xc, Xd)
X_scale_test = data_scale(X_total_test, X_total)
ye = ye.reset_index()['EnergyAboveHull']
y = y.reset_index()['EnergyAboveHull']
yf = yf.reset_index()['Formation_energy']
return X_scale, X_scale_test, y, ye, yf
if __name__ == "__main__":
trainfile = 'perovskite_DFT_EaH_FormE.xlsx' if len(sys.argv)<=1 else sys.argv[1]
testfile = 'newCompound.xlsx' if len(sys.argv)<=2 else sys.argv[2]
id = 0 if len(sys.argv)<=3 else sys.argv[3]
X_scale, X_scale_test, y, ye, yf = wrap_data(trainfile, testfile, id)
clf_result = classification(X_scale, X_scale_test, y)
EaH_predict = reg_EaH(X_scale, X_scale_test, ye)
FE_predict = reg_FE(X_scale, X_scale_test, yf, ye)
output = 'prediction_result.xlsx'
write_result(testfile, output, clf_result, EaH_predict, FE_predict)