-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmodel.py
109 lines (93 loc) · 5.81 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import collections
import numpy as np
import tensorflow as tf
import logging
import features
from custom_rnn_cell import *
class SupertaggerModel(object):
lstm_hidden_size = 128
penultimate_hidden_size = 64
num_layers = 2
# If variables in the computation graph are frozen, the protobuffer can be used out of the box.
def __init__(self, config, data, is_training, max_tokens=None):
self.config = config
self.max_tokens = max_tokens or data.max_tokens
# Redeclare some variables for convenience.
supertags_size = data.supertag_space.size()
embedding_spaces = data.embedding_spaces
with tf.name_scope("inputs"):
if is_training:
x_prop = (tf.int32, [self.max_tokens, len(embedding_spaces)])
y_prop = (tf.int32, [self.max_tokens])
num_tokens_prop = (tf.int64, [])
tritrain_prop = (tf.float32, [])
weights_prop = (tf.float32, [self.max_tokens])
dtypes, shapes = zip(x_prop, y_prop, num_tokens_prop, tritrain_prop, weights_prop)
input_queue = tf.RandomShuffleQueue(len(data.train_sentences), 0, dtypes, shapes=shapes)
self.inputs = [tf.placeholder(dtype, shape) for dtype, shape in zip(dtypes, shapes)]
self.input_enqueue = input_queue.enqueue(self.inputs)
self.x, self.y, self.num_tokens, self.tritrain, self.weights = input_queue.dequeue_many(data.batch_size)
else:
# Each training step is batched with a maximum length.
self.x = tf.placeholder(tf.int32, [None, self.max_tokens, len(embedding_spaces)], name="x")
self.num_tokens = tf.placeholder(tf.int64, [None], name="num_tokens")
# From feature indexes to concatenated embeddings.
with tf.name_scope("embeddings"):
with tf.device("/cpu:0"):
embeddings_w = collections.OrderedDict((name, tf.get_variable(name, [space.size(), space.embedding_size])) for name, space in embedding_spaces.items())
embeddings = [tf.gather(e,i) for e,i in zip(embeddings_w.values(), tf.split(2, len(embedding_spaces), self.x))]
concat_embedding = tf.concat(3, embeddings)
concat_embedding = tf.squeeze(concat_embedding, [2])
if is_training:
concat_embedding = tf.nn.dropout(concat_embedding, 1.0 - config.dropout_probability)
with tf.name_scope("lstm"):
# LSTM cell is replicated across stacks and timesteps.
first_cell = DyerLSTMCell(self.lstm_hidden_size, concat_embedding.get_shape()[2].value)
if self.num_layers > 1:
stacked_cell = DyerLSTMCell(self.lstm_hidden_size, self.lstm_hidden_size)
cell = tf.nn.rnn_cell.MultiRNNCell([first_cell] + [stacked_cell] * (self.num_layers - 1))
else:
cell = first_cell
outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell, cell, concat_embedding, sequence_length=self.num_tokens, dtype=tf.float32)
outputs = tf.concat(2, outputs)
with tf.name_scope("softmax"):
# From LSTM outputs to logits.
flattened = self.flatten(outputs)
penultimate = tf.nn.relu(tf.nn.rnn_cell._linear(flattened, self.penultimate_hidden_size, bias=True, scope="penultimate"))
logits = tf.nn.rnn_cell._linear(penultimate, supertags_size, bias=True, scope="softmax")
with tf.name_scope("prediction"):
self.scores = self.unflatten(logits, name="scores")
if is_training:
with tf.name_scope("loss"):
modified_weights = self.weights * tf.expand_dims((1.0 - self.tritrain) + config.tritrain_weight * self.tritrain, 1)
"""
softmax = tf.nn.softmax(logits)
softmax_list = [tf.squeeze(split, [1]) for split in tf.split(1, self.max_tokens, self.unflatten(softmax))]
y_list = [tf.squeeze(split, [1]) for split in tf.split(1, self.max_tokens, self.y)]
modified_weights_list = [tf.squeeze(split, [1]) for split in tf.split(1, self.max_tokens, modified_weights)]
cross_entropy_list = [-tf.log(tf.gather(tf.transpose(s), y)) for s, y in zip(softmax_list, y_list)]
cross_entropy_list = [tf.reduce_sum(ce * w) for ce, w in zip(cross_entropy_list, modified_weights_list)]
self.loss = sum(cross_entropy_list)
"""
self.loss = tf.nn.seq2seq.sequence_loss([logits],
[self.flatten(self.y)],
[self.flatten(modified_weights)],
average_across_timesteps=False, average_across_batch=False)
params = tf.trainable_variables()
# Construct training operations.
with tf.name_scope("training"):
self.global_step = tf.get_variable("global_step", [], trainable=False, initializer=tf.constant_initializer(0))
optimizer = tf.train.MomentumOptimizer(0.01, 0.7)
grads = tf.gradients(self.loss, params)
grads, _ = tf.clip_by_global_norm(grads, config.max_grad_norm)
self.optimize = optimizer.apply_gradients(zip(grads, params), global_step=self.global_step)
# Commonly used reshaping operations.
def flatten(self, x):
if len(x.get_shape()) == 2:
return tf.reshape(x, [-1])
elif len(x.get_shape()) == 3:
return tf.reshape(x, [-1, x.get_shape()[2].value])
else:
raise ValueError("Unsupported shape: {}".format(x.get_shape()))
def unflatten(self, flattened, name=None):
return tf.reshape(flattened, [-1, self.max_tokens, flattened.get_shape()[1].value], name=name)