From 44855a94fc26282e0ae2bfbe417b37244b084a66 Mon Sep 17 00:00:00 2001 From: Kenneth MacKenzie Date: Thu, 21 Dec 2023 18:13:38 +0000 Subject: [PATCH] Kwxm/spec/no flat for bls (#5690) * Change symbol for units of field to avoid confusion * No flat serialisation for BLS12-381 elements --- doc/plutus-core-spec/cardano/builtins1.tex | 8 +++--- doc/plutus-core-spec/cardano/builtins4.tex | 29 ++++++++++++++++----- doc/plutus-core-spec/flat-serialisation.tex | 29 +++++++++------------ doc/plutus-core-spec/header.tex | 1 + doc/plutus-core-spec/notation.tex | 4 +-- doc/plutus-core-spec/untyped-grammar.tex | 2 +- 6 files changed, 43 insertions(+), 30 deletions(-) diff --git a/doc/plutus-core-spec/cardano/builtins1.tex b/doc/plutus-core-spec/cardano/builtins1.tex index c18f966842b..520ecb5c967 100644 --- a/doc/plutus-core-spec/cardano/builtins1.tex +++ b/doc/plutus-core-spec/cardano/builtins1.tex @@ -27,10 +27,10 @@ \subsubsection{Built-in types and type operators} \hline \texttt{integer} & $\mathbb{Z}$ & \texttt{-?[0-9]+}\\ \texttt{bytestring} & $ \B^*$, the set of sequences of bytes or 8-bit characters. & \texttt{\#([0-9A-Fa-f][0-9A-Fa-f])*}\\ - \texttt{string} & $\U^*$, the set of sequences of Unicode characters. & See note below.\\ + \texttt{string} & $\U^*$, the set of sequences of Unicode characters. & See note below\\ \texttt{bool} & \{\texttt{true, false}\} & \texttt{True | False}\\ \texttt{unit} & \{()\} & \texttt{()}\\ - \texttt{data} & See below. & Not yet supported.\\ + \texttt{data} & See below & See below\\ \hline \end{tabular} \caption{Atomic Types} @@ -43,8 +43,8 @@ \subsubsection{Built-in types and type operators} \hline Operator $\op$ & $\left|\op\right|$ & Denotation & Concrete Syntax\\ \hline - \texttt{list} & 1 & $\denote{\listOf{t}} = \denote{t}^*$ & Not yet supported\\ - \texttt{pair} & 2 & $\denote{\pairOf{t_1}{t_2}} = \denote{t_1} \times \denote{t_2}$ & Not yet supported\\ + \texttt{list} & 1 & $\denote{\listOf{t}} = \denote{t}^*$ & See below\\ + \texttt{pair} & 2 & $\denote{\pairOf{t_1}{t_2}} = \denote{t_1} \times \denote{t_2}$ & See below\\ \hline \end{tabular} \caption{Type Operators} diff --git a/doc/plutus-core-spec/cardano/builtins4.tex b/doc/plutus-core-spec/cardano/builtins4.tex index 5c3f39e9f10..52431771209 100644 --- a/doc/plutus-core-spec/cardano/builtins4.tex +++ b/doc/plutus-core-spec/cardano/builtins4.tex @@ -398,11 +398,26 @@ \subsubsection{BLS12-381 built-in functions} Similarly, a value of type $\ty{bls12\_381\_G2\_element}$ is denoted by a term of the form \texttt{(con bls12\_381\_G2\_element 0x...)} where \texttt{...} consists of 192 hexadecimal digits representing the 96-byte compressed form of -the relevant point. +the relevant point. \textbf{This syntax is provided only for use in textual +Plutus Core programs}, for example for experimentation and testing. We do not +support constants of any of the BLS12-381 types in serialised programs on the +Cardano blockchain: see Section~\ref{sec:flat-constants}. However, for +$\ty{bls12\_381\_G1\_element}$ and $\ty{bls12\_381\_G2\_element}$ one can use +the appropriate uncompression function on a bytestring constant at runtime: +for example, instead of +$$ +\texttt{(con bls12\_381\_G1\_element 0xa1e9a0...)} +$$ +write +$$ +\texttt{[(builtin bls12\_381\_G1\_uncompress) (con bytestring \#a1e9a0...)]}. +$$ -No syntax is provided for values of type $\ty{bls12\_381\_mlresult}$. It is not -possible to parse such values, and they will appear as \texttt{(con -bls12\_381\_mlresult )} if output by a program. +\noindent +No concrete syntax is provided for values of type +$\ty{bls12\_381\_mlresult}$. It is not possible to parse such values, and they +will appear as \texttt{(con bls12\_381\_mlresult )} if output by a +program. \note{Pairing operations.} @@ -441,11 +456,11 @@ \subsubsection{BLS12-381 built-in functions} We do not mandate specific choices for $\MlResultDenotation, \mu_r, e$, and $\phi$, but a plausible choice would be \begin{itemize} -\item $\MlResultDenotation = \FF^*$. +\item $\MlResultDenotation = \units{\FF}$. \item $e$ is the Miller loop associated with the optimal Ate pairing for $E_1$ and $E_2$~\cite{Vercauteren}. -\item $\mu_r = \{x \in \FF^*: x^r=1\}$, the group of $r$th roots of unity in $\FF^*$. -(There are $r$ distinct $r$th roots of unity in $\FF^*$ because the embedding +\item $\mu_r = \{x \in \units{\FF}: x^r=1\}$, the group of $r$th roots of unity in $\FF$. +(There are $r$ distinct $r$th roots of unity in $\FF$ because the embedding degree of $E_1$ and $E_2$ with respect to $r$ is 12 (see~\cite[4.1]{Costello-pairings}).) \item $\psi(x) = x^{\frac{q-1}{r}}$. \end{itemize} diff --git a/doc/plutus-core-spec/flat-serialisation.tex b/doc/plutus-core-spec/flat-serialisation.tex index 90e6d9c9714..2c139a8685e 100644 --- a/doc/plutus-core-spec/flat-serialisation.tex +++ b/doc/plutus-core-spec/flat-serialisation.tex @@ -497,6 +497,7 @@ \subsection{Built-in types} $$ \subsection{Constants} +\label{sec:flat-constants} Values of built-in types can mostly be encoded quite simply by using encoders already defined. Note that the unit value \texttt{(con unit ())} does not have an explicit encoding: the type has only one possible value, so there is no need @@ -508,16 +509,16 @@ \subsection{Constants} bytestring is obtained using $\D_{\B^*}$ and this is then decoded from CBOR using $\dData$ to obtain a $\ty{data}$ object. -The $\ty{bls12\_381\_G1\_element}$ and $\ty{bls12\_381\_G2\_element}$ types are -serialised by converting to byestrings using the $\compress_{G_1}$ and -$\compress_{G_2}$ functions defined in -Section~\ref{sec:bls-builtins-4}, and decoding is similarly performed -via bytestrings using the $\uncompress$ functions. \textbf{We do not provide -serialisation and deserialisation for constants of the -$\ty{bls12\_381\_mlresult}$ type}; we have specified a tag for this type, but if -that tag is encountered during deserialisation then deserialisation fails and -any subsequent input is ignored. - +We do not provide serialisation and deserialisation for constants of type +$\ty{bls12\_381\_G1\_element}$, $\ty{bls12\_381\_G2\_element}$, or +$\ty{bls12\_381\_mlresult}$. We have specified tags for these types, but if one +of these tags is encountered during deserialisation then deserialisation fails +and any subsequent input is ignored. Note however that constants of the first +two types can be serialised by using the compression functions defined in +Section~\ref{sec:bls-builtins-4} and serialising the resulting bytestrings. +Decoding can similarly be performed indirectly by using +\texttt{bls12\_381\_G1\_uncompress} and \texttt{bls12\_381\_G2\_uncompress} on +bytestring constants during program execution. \begin{alignat*}{2} & \Econstant{\ty{integer}}(s,n) &&= \E_{\Z}(s, n) \\ @@ -528,9 +529,7 @@ \subsection{Constants} & \Econstant{\ty{bool}}(s, \texttt{True}) &&= s \cdot \bits{1}\\ & \Econstant{\listOf{\tn}}(s,l) &&= \Elist^{\tn}_{\mathsf{constant}}(s, l) \\ & \Econstant{\pairOf{\tn_1}{\tn_2}}(s,(c_1,c_2)) &&= \Econstant{\tn_2}(\Econstant{\tn_1}(s, c_1), c_2)\\ - & \Econstant{\ty{data}}(s,d) &&= \E_{\B^*}(s, \eData(d))\\ - & \Econstant{\ty{bls12\_381\_G1\_element}}(s,e) &&= \E_{\B^*}(s, \compress_{G_1}(e))\\ - & \Econstant{\ty{bls12\_381\_G2\_element}}(s,e) &&= \E_{\B^*}(s, \compress_{G_2}(e)). + & \Econstant{\ty{data}}(s,d) &&= \E_{\B^*}(s, \eData(d)) \end{alignat*} \begin{alignat*}{3} @@ -548,9 +547,7 @@ \subsection{Constants} \end{cases}\\ &\dConstant{\ty{data}}(s) &&= (s', d) && \text{if $\D_{\B*}(s) = (s', t)$ - and $\dData(t) = (t', d)$ for some $t'$}\\ - & \dConstant{\ty{bls12\_381\_G1\_element}}(s) &&= (s',e) && \text{if $\D_{\B^*}(s) = (s',b)$ and $\uncompress_{G_1}(b)=e$}\\ - & \dConstant{\ty{bls12\_381\_G2\_element}}(s) &&= (s',e) && \text{if $\D_{\B^*}(s) = (s',b)$ and $\uncompress_{G_2}(b)=e$}. + and $\dData(t) = (t', d)$ for some $t'$} \end{alignat*} \subsection{Built-in functions} diff --git a/doc/plutus-core-spec/header.tex b/doc/plutus-core-spec/header.tex index 58848a4a293..43ca4507ae4 100644 --- a/doc/plutus-core-spec/header.tex +++ b/doc/plutus-core-spec/header.tex @@ -340,6 +340,7 @@ \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\is}{is} \DeclareMathOperator{\dom}{dom} +\newcommand{\units}[1]{#1^{\times}} % Group of units of a field %%% Spacing in tables diff --git a/doc/plutus-core-spec/notation.tex b/doc/plutus-core-spec/notation.tex index 495c3196aa0..3cc51f47bbf 100644 --- a/doc/plutus-core-spec/notation.tex +++ b/doc/plutus-core-spec/notation.tex @@ -17,7 +17,7 @@ \subsection{Sets} \item $\B^*$ is the set of all bytestrings. \item $\Z = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$. \item $\mathbb{F}_q$ denotes a finite field with $q$ elements ($q$ a prime power). - \item $\mathbb{F}_q^*$ denotes the multiplicative group of nonzero elements of $\mathbb{F}_q$. + \item $\units{\mathbb{F}} = \mathbb{F}\setminus\{0\}$ denotes the multiplicative group of nonzero elements of a field $\mathbb{F}$. \item $\U$ denotes the set of Unicode scalar values, as defined in~\cite[Definition D76]{Unicode-standard}. \item $\U^*$ is the set of all Unicode strings. \item We assume that there is a special symbol $\errorX$ which does not appear @@ -34,7 +34,7 @@ \subsection{Sets} \nomenclature[An3]{$\Nab{a}{b}$}{$\{n \in \N: a \leq n \leq b\}$}% \nomenclature[Aw]{$\Z$}{$\{\ldots, -2, -1, 0, 1, 2, \ldots\}$}% \nomenclature[Af]{$\mathbb{F}_q$}{The finite field with $q$ elements}% -\nomenclature[Af]{$\mathbb{F}_q^*$}{The multiplicative group of $\mathbb{F}_q$}% +\nomenclature[Af]{$\units{\mathbb{F}}$}{The multiplicative group of a field $\mathbb{F}$, ie $\mathbb{F}\setminus\{0\}$}% \nomenclature[Ab]{$\B$}{$\{n \in \Z: 0 \leq n \leq 255\}$}% \nomenclature[Ab]{$\B^*$}{The set of all bytestrings}% \nomenclature[Au]{$\U$}{The set of Unicode scalar values}% diff --git a/doc/plutus-core-spec/untyped-grammar.tex b/doc/plutus-core-spec/untyped-grammar.tex index 38836f41ae5..f84ffc2e01a 100644 --- a/doc/plutus-core-spec/untyped-grammar.tex +++ b/doc/plutus-core-spec/untyped-grammar.tex @@ -162,7 +162,7 @@ \subsection{Notes} (\cite{deBruijn}, \cite[C.3]{Barendregt}), and for this we redefine names to be natural numbers. In de Bruijn terms, $\lambda$-expressions do not need to bind a variable, but in order to re-use our existing syntax we arbitrarily use 0 for -the bound variable, so that all $\lambda$-expresssions are of the form +the bound variable, so that all $\lambda$-expressions are of the form \texttt{(lam 0 $M$)}; other variables (ie, those not appearing immediately after a \texttt{lam} binder) are represented by natural number greater than zero.