forked from vitali87/utility
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 11.3 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
dfa
df3
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(., index = c("country","year")) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df3 <- merge(df1,df2, by = colnames(df1),all.x = T)
df3
dfa
dfa <-df1 %>%
filter(!is.na(X1))
dfa
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year")) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df3 <- merge(df1,df2, by = colnames(df1),all.x = T)
df3
dfa <-df1 %>%
filter(!is.na(X1)) %>%
filter(country=="A") %>%
select(X1) %>%
mutate(dfahp = hpfilter(X1,type = "lambda",freq = 6.25)$trend)
dfa
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
select(X1) %>%
mutate(dfahp = hpfilter(X1,type = "lambda",freq = 6.25)$trend)
dfa
pvar(df2$year)
pvar(df2)
is.pconsecutive(df2)
df2 <- df1 %>% #group_by(country) %>%
#filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year")) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df3 <- merge(df1,df2, by = colnames(df1),all.x = T)
df3
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
pdata.frame(index = c("country","year")) %>%
select(X1) %>%
mutate(dfahp = hpfilter(X1,type = "lambda",freq = 6.25)$trend)
dfa
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
select(X1) %>%
pdata.frame(index = c("country","year")) %>%
mutate(dfahp = hpfilter(X1,type = "lambda",freq = 6.25)$trend)
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
select(country,year,X1) %>%
pdata.frame(index = c("country","year")) %>%
mutate(dfahp = hpfilter(X1,type = "lambda",freq = 6.25)$trend)
dfa
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year")) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df3 <- merge(df1,df2, by = colnames(df1),all.x = T)
df2
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year"))
df2
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year")) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df2
df3 <- merge(df1,df2, by = colnames(df1),all.x = T)
df3
dfa <-df1 %>%
filter(!is.na(X1), country=="A")
dfa
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
pdata.frame(index = c("country","year"))
dfa
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
pdata.frame(index = c("country","year"))
dfa
x = year
x=dfa
data(unemp)
unemp
unemp.hp <- hpfilter(unemp)
unemp.hp
x=dfa$X1
freq=6.25
type = "lambda"
if (is.null(drift))
drift <- FALSE
type = "lambda"
drift = FALSE
if (is.null(drift))
drift <- FALSE
xname = deparse(substitute(x))
xname
type = match.arg(type)
type
if (is.null(type))
type <- "lambda"
is.ts(x)
if (is.ts(x)) {
tsp.x <- tsp(x)
frq.x <- frequency(x)
if (type == "lambda") {
if (is.null(freq)) {
if (frq.x == 1)
lambda = 6
if (frq.x == 4)
lambda = 1600
if (frq.x == 12)
lambda = 129600
}
else lambda = freq
}
}
else {
if (type == "lambda") {
if (is.null(freq))
stop("freq is NULL")
else lambda = freq
}
}
type == "lambda"
is.null(freq)
lambda = freq
type == "frequency"
xo = x
x = as.matrix(x)
x
n = length(x)
imat = diag(n)
imat
Ln = rbind(matrix(0, 1, n), diag(1, n - 1, n))
Ln
Ln = (imat - Ln) %*% (imat - Ln)
Ln
Q = t(Ln[3:n, ])
Q
SIGMA.R = t(Q) %*% Q
SIGMA.R
SIGMA.n = diag(n - 2)
SIGMA.n
g = t(Q) %*% as.matrix(x)
t(Q)
as.matrix(x)
g = t(Q) %*% as.matrix(x)
b = solve(SIGMA.n + lambda * SIGMA.R, g)
if (is.null(drift))
drift <- FALSE
xname = deparse(substitute(x))
type = match.arg(type)
if (is.null(type))
type <- "lambda"
if (is.ts(x)) {
tsp.x <- tsp(x)
frq.x <- frequency(x)
if (type == "lambda") {
if (is.null(freq)) {
if (frq.x == 1)
lambda = 6
if (frq.x == 4)
lambda = 1600
if (frq.x == 12)
lambda = 129600
}
else lambda = freq
}
}
else {
if (type == "lambda") {
if (is.null(freq))
stop("freq is NULL")
else lambda = freq
}
}
if (type == "frequency") {
if (is.null(freq))
stop("freq is NULL")
else lambda = (2 * sin(pi/freq))^-4
}
xo = x
x = as.matrix(x)
if (drift)
x = undrift(x)
n = length(x)
imat = diag(n)
Ln = rbind(matrix(0, 1, n), diag(1, n - 1, n))
Ln = (imat - Ln) %*% (imat - Ln)
Q = t(Ln[3:n, ])
SIGMA.R = t(Q) %*% Q
SIGMA.n = diag(n - 2)
g = t(Q) %*% as.matrix(x)
if (is.null(drift))
drift <- FALSE
xname = deparse(substitute(x))
type = match.arg(type)
if (is.null(type))
type <- "lambda"
if (is.ts(x)) {
tsp.x <- tsp(x)
frq.x <- frequency(x)
if (type == "lambda") {
if (is.null(freq)) {
if (frq.x == 1)
lambda = 6
if (frq.x == 4)
lambda = 1600
if (frq.x == 12)
lambda = 129600
}
else lambda = freq
}
}
else {
if (type == "lambda") {
if (is.null(freq))
stop("freq is NULL")
else lambda = freq
}
}
x
freq
type
drift
if (is.null(drift))
drift <- FALSE
xname = deparse(substitute(x))
type = match.arg(type)
type = "lambda"
if (is.null(drift))
drift <- FALSE
xname = deparse(substitute(x))
type = match.arg(type)
type = c("lambda")
type = match.arg(type)
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
pdata.frame(index = c("country","year"))
dfa
hpfilter(dfa$X1,type = "lambda",freq = 6.25)$trend
library(mFilter)
library(plm)
library(dplyr)
df1 <- read.table(text="country year X1 X2 W
A 1990 10 20 40
A 1991 12 15 NA
A 1992 14 17 41
A 1993 17 NA 44
B 1990 20 NA 45
B 1991 NA 13 61
B 1992 12 12 67
B 1993 14 10 68
C 1990 10 20 70
C 1991 11 14 50
C 1992 12 15 NA
C 1993 14 16 NA
D 1990 20 17 80
D 1991 16 20 91
D 1992 15 21 70
D 1993 14 22 69
", header=TRUE, stringsAsFactors=FALSE)
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
pdata.frame(index = c("country","year"))
hpfilter(dfa$X1,type = "lambda",freq = 6.25)$trend
dfa <-df1 %>%
filter(!is.na(X1), country=="A")
hpfilter(dfa$X1,type = "lambda",freq = 6.25)$trend
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year"))
hpfilter(df2$X1, type = "lambda", freq = 6.25)$trend
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c(.,"country","year"))
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(.,index = c("country","year"))
hpfilter(df2$X1, type = "lambda", freq = 6.25)$trend
df2 <- df1 %>% group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year"))
hpfilter(df2$X1, type = "lambda", freq = 6.25)$trend
df2 <- df1 %>% group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("year")) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df3 <- merge(df1,df2, by = colnames(df1),all.x = T)
df3
df2
df2 <- df1 %>% group_by(country, year) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("year")) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df3 <- merge(df1,df2, by = colnames(df1),all.x = T)
df3
df2 <- df1 %>% group_by(country, year) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year")) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df3 <- merge(df1,df2, by = colnames(df1),all.x = T)
df3
hpfilter(dfa$X1,type = "lambda",freq = 6.25)$trend
dfa <-df1 %>%
filter(!is.na(X1), country=="A") %>%
mutate(dfahp = hpfilter(X1,type = "lambda",freq = 6.25)$trend)
dfa
dfa <-df1 %>%
group_by(country, year) %>%
filter(!is.na(X1), country=="A") %>%
mutate(dfahp = hpfilter(X1,type = "lambda",freq = 6.25)$trend)
dfa <-df1 %>%
group_by(country, year)
dfa <-df1 %>%
group_by(country, year) %>%
filter(!is.na(X1), country=="A")
dfa
hpfilter(dfa$X1,type = "lambda",freq = 6.25)$trend
dfa <-df1 %>%
group_by(country, year) %>%
filter(!is.na(X1), country=="A") %>%
mutate(dfahp = hpfilter(X1,type = "lambda",freq = 6.25)$trend)
x
is.ts(x)
type
type = match.arg("lambda")
"lambda" = match.arg("lambda")
if (is.null(type))
type <- "lambda"
if (is.ts(x)) {
tsp.x <- tsp(x)
frq.x <- frequency(x)
if (type == "lambda") {
if (is.null(freq)) {
if (frq.x == 1)
lambda = 6
if (frq.x == 4)
lambda = 1600
if (frq.x == 12)
lambda = 129600
}
else lambda = freq
}
}
else {
if (type == "lambda") {
if (is.null(freq))
stop("freq is NULL")
else lambda = freq
}
}
is.null(freq)
type == "lambda"
if (type == "frequency") {
if (is.null(freq))
stop("freq is NULL")
else lambda = (2 * sin(pi/freq))^-4
}
lambda
xo = x
x = as.matrix(x)
if (drift)
x = undrift(x)
n = length(x)
imat = diag(n)
Ln = rbind(matrix(0, 1, n), diag(1, n - 1, n))
Ln = (imat - Ln) %*% (imat - Ln)
Q = t(Ln[3:n, ])
SIGMA.R = t(Q) %*% Q
SIGMA.n = diag(n - 2)
g = t(Q) %*% as.matrix(x)
b = solve(SIGMA.n + lambda * SIGMA.R, g)
x.cycle = c(lambda * Q %*% b)
x.trend = x - x.cycle
if (is.ts(xo)) {
tsp.x = tsp(xo)
x.cycle = ts(x.cycle, start = tsp.x[1], frequency = tsp.x[3])
x.trend = ts(x.trend, start = tsp.x[1], frequency = tsp.x[3])
x = ts(x, start = tsp.x[1], frequency = tsp.x[3])
}
x.cycle
A = lambda * Q %*% solve(SIGMA.n + lambda * SIGMA.R) %*%
t(Q)
A
Q
SIGMA.n
res <- list(cycle = x.cycle, trend = x.trend, fmatrix = A,
title = "Hodrick-Prescott Filter", xname = xname, call = as.call(match.call()),
type = type, lambda = lambda, method = "hpfilter", x = x)
structure(res, class = "mFilter")
x.cycle
x.trend
A
xname
as.call(match.call()
call
call
type
lambda
method
x
hpfilter(dfa$X1,type = "lambda",freq = 6.25)$trend
x = dfa$X1
x
type = "lambda"
freq = 6.25
drift = FALSE
if (is.null(drift))
drift <- FALSE
drift
xname = deparse(substitute(x))
type = match.arg(type)
if (is.null(type))
type <- "lambda"
if (is.ts(x)) {
tsp.x <- tsp(x)
frq.x <- frequency(x)
if (type == "lambda") {
if (is.null(freq)) {
if (frq.x == 1)
lambda = 6
if (frq.x == 4)
lambda = 1600
if (frq.x == 12)
lambda = 129600
}
else lambda = freq
}
}
lambda = freq
if (type == "frequency") {
if (is.null(freq))
stop("freq is NULL")
else lambda = (2 * sin(pi/freq))^-4
}
xo = x
x = as.matrix(x)
if (drift)
x = undrift(x)
n = length(x)
imat = diag(n)
Ln = rbind(matrix(0, 1, n), diag(1, n - 1, n))
Ln = (imat - Ln) %*% (imat - Ln)
Q = t(Ln[3:n, ])
SIGMA.R = t(Q) %*% Q
SIGMA.n = diag(n - 2)
g = t(Q) %*% as.matrix(x)
b = solve(SIGMA.n + lambda * SIGMA.R, g)
x.cycle = c(lambda * Q %*% b)
x.trend = x - x.cycle
x.cycle
x.trend
is.ts(xo)
lambda
Q
b
df2 <- df1 %>% group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year"))
df2
hpfilter(df2$X1, type = "lambda", freq = 6.25)$trend
df2 <- df1 %>% group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year"))
df2
df2$X1
df2 <- df1 %>% group_by(country) %>%
filter(!is.na(X1))
df2
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1))
df2
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year"))
df2
typeof(df2)
typeof(df2$country)
typeof(df2$year)
typeof(df2$X1)
class(df2$country)
class(df2$year)
class(df2$X1)
is.ts(df2$X1)
class(df2$X2)
class(df2$W
)
class(df2)
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year"),stringsAsFactors=FALSE) %>%
mutate(X1_trend = hpfilter(X1, type = "lambda", freq = 6.25)$trend)
df2
hpfilter(dfa$X1,type = "lambda",freq = 6.25)$trend
hpfilter(df2$X1, type = "lambda", freq = 6.25)$trend
df2$X1
is.ts(df2$X1)
data("Wages", package = "plm")
Wag <- pdata.frame(Wages, 595)
Wag
df2 <- df1 %>% #group_by(country) %>%
filter(!is.na(X1)) %>%
pdata.frame(index = c("country","year")) %>%
mutate(boo=as.list(X1, keep.attributes = TRUE),
X1_trend = hpfilter(boo, type = "lambda", freq = 6.25)$trend)
boo=as.list(df2$X1, keep.attributes = TRUE)
boo