-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsim_figure6a.py
161 lines (114 loc) · 4.71 KB
/
sim_figure6a.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import numpy as np
import time
from datetime import datetime
import multiprocessing
from joblib import Parallel
from joblib import dump, load
from comm import *
from commsetup import *
from receivers import *
import matplotlib.pyplot as plt
########################################
# Preamble
########################################
# Obtain the number of processors
num_cores = multiprocessing.cpu_count()
# Random seed
np.random.seed(42)
# Treating errors in numpy
np.seterr(divide='raise', invalid='raise')
########################################
# System parameters
########################################
# Number of antennas
M = 128
# Number of users
K = 16
########################################
# Environment parameters
########################################
# Define pre-processing SNR
SNRdB_range = np.arange(-10, 11)
SNR_range = 10**(SNRdB_range/10)
########################################
# Simulation parameters
########################################
# Define number of simulation setups
nsetups = 10000
# Define number of channel realizations
nchnlreal = 100
########################################
# Running simulation
########################################
# Simulation header
print('--------------------------------------------------')
now = datetime.now()
print(now.strftime("%B %d, %Y -- %H:%M:%S"))
print('M-MIMO: BER vs SNR')
print('\t M = '+str(M))
print('\t K = '+str(K))
print('--------------------------------------------------')
# Prepare to save simulation results
ber_zf = np.zeros((SNR_range.size, nsetups, nchnlreal), dtype=np.double)
ber_sdk = np.zeros((SNR_range.size, nsetups, nchnlreal), dtype=np.double)
ber_bdk = np.zeros((SNR_range.size, nsetups, nchnlreal), dtype=np.double)
ber_sdk_relaxed = np.zeros((2, SNR_range.size, nsetups, nchnlreal), dtype=np.double)
# Obtain qam transmitted signals
tx_symbs, x_ = qam_transmitted_signals(K, nsetups)
# Go through all setups
for s in range(nsetups):
print(f"setup: {s}/{nsetups-1}")
timer_setup = time.time()
# Generate communication setup
H = massive_mimo(M, K, nchnlreal)
# Go through all different SNR values
for ss, SNR in enumerate(SNR_range):
print(f"\tsnr: {ss}/{len(SNR_range)-1}")
# Compute received signal
y_ = received_signal(SNR, x_[s], H)
# Perform ZF receiver
xhat_soft_zf = zf_receiver(H, y_)
# Perform standard distributed Kaczmarz receiver
xhat_soft_sdk = standard_distributed_kaczmarz_receiver(H, y_, SNR, niter=1)
xhat_soft_sdk_previous = standard_distributed_kaczmarz_receiver(H, y_, SNR, mu='previous', niter=1)
xhat_soft_sdk_proposed = standard_distributed_kaczmarz_receiver(H, y_, SNR, mu='proposed', niter=1)
# Perform Bayesian distributed Kaczmarz receiver
xhat_soft_bdk = bayesian_distributed_kaczmarz_receiver(H, y_, SNR, niter=1)
# Evaluate BER performance
ber_zf[ss, s] = ber_evaluation(xhat_soft_zf, tx_symbs[s])
ber_sdk[ss, s] = ber_evaluation(xhat_soft_sdk, tx_symbs[s])
ber_sdk_relaxed[0, ss, s] = ber_evaluation(xhat_soft_sdk_previous, tx_symbs[s])
ber_sdk_relaxed[1, ss, s] = ber_evaluation(xhat_soft_sdk_proposed, tx_symbs[s])
ber_bdk[ss, s] = ber_evaluation(xhat_soft_bdk, tx_symbs[s])
print('[setup] elapsed '+str(time.time()-timer_setup)+' seconds.\n')
now = datetime.now()
print(now.strftime("%B %d, %Y -- %H:%M:%S"))
print('--------------------------------------------------')
np.savez('mmimo_ber_vs_snr.npz',
M=M,
K=K,
SNRdB_range=SNRdB_range,
ber_zf=ber_zf,
ber_sdk=ber_sdk,
ber_bdk=ber_bdk,
ber_sdk_relaxed=ber_sdk_relaxed
)
# Compute average values
ber_zf_avg = (ber_zf.mean(axis=-1)).mean(axis=-1)
ber_sdk_avg = (ber_sdk.mean(axis=-1)).mean(axis=-1)
ber_bdk_avg = (ber_bdk.mean(axis=-1)).mean(axis=-1)
ber_sdk_relaxed_avg = (ber_sdk_relaxed.mean(axis=-1)).mean(axis=-1)
########################################
# Plotting
########################################
fig, ax = plt.subplots()
ax.plot(SNRdB_range, ber_zf_avg, label='ZF: centralized', color='black', linewidth=2)
ax.plot(SNRdB_range, ber_sdk_avg, label='SDK [1]: $\lambda=1$, $T = 1$', linewidth=2, linestyle='dashed', color='black')
ax.plot(SNRdB_range, ber_bdk_avg, label=r'BDK: ${\lambda}^{\star}=1$, $T = 1$', linewidth=2, linestyle='dotted')
ax.plot(SNRdB_range, ber_sdk_relaxed_avg[0], label='SDK [1]: $\lambda=0.5\cdot{K}/{M}\cdot\log(4\cdot M \cdot \mathrm{SNR})$ in [1], $T = 1$', linewidth=2, linestyle='dashdot', color='black')
ax.plot(SNRdB_range, ber_sdk_relaxed_avg[1], label=r'SDK [1]: $\lambda$ in (13), $T = 1$', linewidth=2, linestyle=(0, (3, 1, 1, 1)))
ax.legend()
ax.set_xlabel('SNR [dB]')
ax.set_ylabel('average BER per UE')
ax.set_yscale('log')
plt.show()