-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfunctionExpLSF_UPA.m
59 lines (51 loc) · 2.17 KB
/
functionExpLSF_UPA.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function [R] = functionExpLSF_UPA(M,theta,varphi,corrFactor,stdLSF)
%Generates the channel covariance matrix when considering spatially
%correlated channels from the compound of the exponential spatial
%correlation model and the consideration of large-scale fading (LSF)
%variations over the array for a uniform planar array (UPA).
%
%This Matlab function is used in the paper:
%
%Victor Croisfelt Rodrigues, Jose Carlos Marinello, and Taufik Abrao.
%"Exponential spatial correlation with large-scale fading variations in
%massive MIMO channel estimation". Trans Emerging Tel Tech. 2019;e3563.
%
%Download paper: https://doi.org/10.1002/ett.3563
%
%This is version 2.0 (Last edited: 04-09-2019)
%
%License: This code is licensed under the GPLv3 license. If you in any way
%use this code for research that results in publications, please reference
%our original article as shown above.
%
%@Inputs:
% M: number of BS antennas.
% theta: azimuthal angle.
% varphi: elevation angle.
% corrFactor: correlation factor between antenna elements.
% stdLSF: standard deviation of LSF variations over the array.
%
%@Outputs:
% R: M x M generated channel covariance matrix.
%
%References:
%[1] Emil Bjornson, Jakob Hoydis and Luca Sanguinetti (2017), "Massive MIMO
%Networks: Spectral, Energy, and Hardware Efficiency", Foundations and
%Trends in Signal Processing: Vol. 11, No. 3-4, pp. 154-655. DOI: 10.1561/
%2000000093 (https://github.com/emilbjornson/massivemimobook).
%
%Check for the special case of M = 1
if M == 1
%Determine the spatial correlation matrix of the horizontal ULA
R = functionExpLSF_ULA(M,theta,corrFactor,stdLSF);
else
%Compute the number of antennas at the horizontal and vertical
%dimensions, where M must be a perfect square number
M = sqrt(M);
%Determine the spatial correlation matrix of the horizontal ULA
Rh = functionExpLSF_ULA(M,theta,corrFactor,stdLSF);
%Determine the spatial correlation matrix of the vertical ULA
Rv = functionExpLSF_ULA(M,varphi,corrFactor,stdLSF);
%Compute the generated R covariance matrix by using the Kronecker model
R = kron(Rh,Rv);
end