-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
223 lines (193 loc) · 8.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
from __future__ import print_function
import os
import time
import random
import argparse
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as dset
import torchvision.transforms as transforms
import torchvision.utils as vutils
from torch.autograd import Variable
### load project files
import models
from models import weights_init
from models import WLoss
from data_loader import PokemonDataset
parser = argparse.ArgumentParser()
parser.add_argument('--dataRoot', default='./POKEMON/', help='path to dataset')
parser.add_argument('--workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--batchSize', type=int, default=32, help='input batch size')
parser.add_argument('--imageSize', type=int, default=64, help='the height / width of the input image to network')
parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector')
parser.add_argument('--ngf', type=int, default=64)
parser.add_argument('--ndf', type=int, default=64)
parser.add_argument('--niter', type=int, default=5000, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda' , action='store_true', help='enables cuda')
parser.add_argument('--ngpu' , type=int, default=1, help='number of GPUs to use')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--outDir', default='./outputs', help='folder to output images and model checkpoints')
parser.add_argument('--model', type=int, default=1, help='1 for dcgan, 2 for illustrationGAN-like-GAN')
parser.add_argument('--d_labelSmooth', type=float, default=0, help='for D, use soft label "1-labelSmooth" for real samples')
parser.add_argument('--n_extra_layers_d', type=int, default=0, help='number of extra conv layers in D')
parser.add_argument('--n_extra_layers_g', type=int, default=1, help='number of extra conv layers in G')
parser.add_argument('--binary', action='store_true', help='z from bernoulli distribution, with prob=0.5')
# simply prefer this way
# arg_list = [
# '--dataRoot', '/home/jielei/data/danbooru-faces',
# '--workers', '12',
# '--batchSize', '128',
# '--imageSize', '64',
# '--nz', '100',
# '--ngf', '64',
# '--ndf', '64',
# '--niter', '80',
# '--lr', '0.0002',
# '--beta1', '0.5',
# '--cuda',
# '--ngpu', '1',
# '--netG', '',
# '--netD', '',
# '--outDir', './results',
# '--model', '1',
# '--d_labelSmooth', '0.1', # 0.25 from imporved-GAN paper
# '--n_extra_layers_d', '0',
# '--n_extra_layers_g', '1', # in the sense that generator should be more powerful
# ]
opt = parser.parse_args()
# opt = parser.parse_args(arg_list)
print(opt)
transform=transforms.Compose([
transforms.Scale(opt.imageSize + 16),
transforms.RandomCrop(opt.imageSize),
transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5), (0.5,0.5,0.5)), # bring images to (-1,1)
])
pokemon_dataset = PokemonDataset(opt.dataRoot, transform)
try:
os.makedirs(opt.outDir)
except OSError:
pass
opt.manualSeed = random.randint(1,10000) # fix seed, a scalar
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
cudnn.benchmark = True
if torch.cuda.is_available() and not opt.cuda:
print("WARNING: You have a CUDA device, so you should probably run with --cuda")
nc = 3
ngpu = opt.ngpu
nz = opt.nz
ngf = opt.ngf
ndf = opt.ndf
n_extra_d = opt.n_extra_layers_d
n_extra_g = opt.n_extra_layers_g
dataloader = torch.utils.data.DataLoader(pokemon_dataset, batch_size=opt.batchSize,
shuffle=True, num_workers=opt.workers)
# load models
if opt.model == 1:
netG = models._netG_1(ngpu, nz, nc, ngf, n_extra_g)
netD = models._netD_1(ngpu, nz, nc, ndf, n_extra_d)
elif opt.model == 2:
netG = models._netG_2(ngpu, nz, nc, ngf)
netD = models._netD_2(ngpu, nz, nc, ndf)
netG.apply(weights_init)
if opt.netG != '':
netG.load_state_dict(torch.load(opt.netG))
print(netG)
netD.apply(weights_init)
if opt.netD != '':
netD.load_state_dict(torch.load(opt.netD))
print(netD)
criterion = WLoss()
criterion_MSE = nn.MSELoss()
input = torch.FloatTensor(opt.batchSize, 3, opt.imageSize, opt.imageSize)
noise = torch.FloatTensor(opt.batchSize, nz, 1, 1)
if opt.binary:
bernoulli_prob = torch.FloatTensor(opt.batchSize, nz, 1, 1).fill_(0.5)
fixed_noise = torch.bernoulli(bernoulli_prob)
else:
fixed_noise = torch.FloatTensor(opt.batchSize, nz, 1, 1).normal_(0, 1)
label = torch.FloatTensor(opt.batchSize)
real_label = 1
fake_label = 0
if opt.cuda:
netD.cuda()
netG.cuda()
criterion.cuda()
criterion_MSE.cuda()
input, label = input.cuda(), label.cuda()
noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
input = Variable(input)
label = Variable(label)
noise = Variable(noise)
fixed_noise = Variable(fixed_noise)
# setup optimizer
optimizerD = optim.Adam(netD.parameters(), lr = opt.lr, betas = (opt.beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr = opt.lr, betas = (opt.beta1, 0.999))
for epoch in range(opt.niter):
for i, data in enumerate(dataloader):
start_iter = time.time()
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# train with real
netD.zero_grad()
# real_cpu, _ = data
real_cpu = data
batch_size = real_cpu.size(0)
input.data.resize_(real_cpu.size()).copy_(real_cpu)
label.data.resize_(batch_size).fill_(real_label - opt.d_labelSmooth) # use smooth label for discriminator
output_real = netD(input)
D_x = output_real.data.mean()
# train with fake
noise.data.resize_(batch_size, nz, 1, 1)
if opt.binary:
bernoulli_prob.resize_(noise.data.size())
noise.data.copy_(2*(torch.bernoulli(bernoulli_prob)-0.5))
else:
noise.data.normal_(0, 1)
fake,z_prediction = netG(noise)
label.data.fill_(fake_label)
output_fake = netD(fake.detach()) # add ".detach()" to avoid backprop through G
errD_real = criterion(True, output_real, output_fake)
errD_real.backward()
errD_fake = criterion(False, None, output_fake)
errD_fake.backward() # gradients for fake/real will be accumulated
D_G_z1 = output_fake.data.mean()
errD = errD_real + errD_fake
optimizerD.step() # .step() can be called once the gradients are computed
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
netG.zero_grad()
label.data.fill_(real_label) # fake labels are real for generator cost
output = netD(fake)
errG = criterion(output, label)
errG.backward(retain_graph=True) # True if backward through the graph for the second time
if opt.model == 2: # with z predictor
errG_z = criterion_MSE(z_prediction, noise)
errG_z.backward()
D_G_z2 = output.data.mean()
optimizerG.step()
end_iter = time.time()
print('[%d/%d][%d/%d] Loss_D: %.4f Loss_G: %.4f D(x): %.4f D(G(z)): %.4f / %.4f Elapsed %.2f s'
% (epoch, opt.niter, i, len(dataloader),
errD.data.item(), errG.data.item(), D_x, D_G_z1, D_G_z2, end_iter-start_iter))
if i % 100 == 0:
# the first 64 samples from the mini-batch are saved.
vutils.save_image(real_cpu[0:64,:,:,:],
'%s/real_samples.png' % opt.outDir, nrow=8)
fake,_ = netG(fixed_noise)
vutils.save_image(fake.data[0:64,:,:,:],
'%s/fake_samples_epoch_%03d.png' % (opt.outDir, epoch), nrow=8)
if epoch % 1 == 0:
# do checkpointing
torch.save(netG.state_dict(), '%s/netG_epoch_%d.pth' % (opt.outDir, epoch))
torch.save(netD.state_dict(), '%s/netD_epoch_%d.pth' % (opt.outDir, epoch))