forked from petercorke/spatialmath-matlab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtr2angvec.m
123 lines (108 loc) · 3.96 KB
/
tr2angvec.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
%TR2ANGVEC Convert rotation matrix to angle-vector form
%
% [THETA,V] = TR2ANGVEC(R, OPTIONS) is rotation expressed in terms of an
% angle THETA (1x1) about the axis V (1x3) equivalent to the orthonormal rotation
% matrix R (3x3).
%
% [THETA,V] = TR2ANGVEC(T, OPTIONS) as above but uses the rotational part of the
% homogeneous transform T (4x4).
%
% If R (3x3xK) or T (4x4xK) represent a sequence then THETA (Kx1)is a vector
% of angles for corresponding elements of the sequence and V (Kx3) are the
% corresponding axes, one per row.
%
% Options::
% 'deg' Return angle in degrees (default radians)
%
% Notes::
% - For an identity rotation matrix both THETA and V are set to zero.
% - The rotation angle is always in the interval [0 pi], negative rotation
% is handled by inverting the direction of the rotation axis.
% - If no output arguments are specified the result is displayed.
%
% See also ANGVEC2R, ANGVEC2TR, TRLOG.
%## 3d homogeneous rotation
% Copyright (C) 1993-2019 Peter I. Corke
%
% This file is part of The Spatial Math Toolbox for MATLAB (SMTB).
%
% Permission is hereby granted, free of charge, to any person obtaining a copy
% of this software and associated documentation files (the "Software"), to deal
% in the Software without restriction, including without limitation the rights
% to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
% of the Software, and to permit persons to whom the Software is furnished to do
% so, subject to the following conditions:
%
% The above copyright notice and this permission notice shall be included in all
% copies or substantial portions of the Software.
%
% THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
% IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
% FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
% COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
% IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
% CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
%
% https://github.com/petercorke/spatial-math
function [theta_, n_] = tr2angvec(R, varargin)
assert(ishomog(R) || isrot(R), 'SMTB:tr2angvec:badarg', 'argument must be SO(3) or SE(3)');
opt.deg = false;
opt = tb_optparse(opt, varargin);
% get the rotation submatrix(s)
if ~isrot(R)
R = t2r(R);
end
if size(R,3) > 1
theta = zeros(size(R,3),1);
v = zeros(size(R,3),3);
end
for i=1:size(R,3) % for each rotation matrix in the sequence
% There are a few ways to do this:
%
% 1.
%
% e = 0.5*vex(R - R'); % R-R' is skew symmetric
% theta = asin(norm(e));
% n = unit(e);
%
% but this fails for rotations > pi/2
%
% 2.
%
% e = vex(logm(R));
% theta = norm(e);
% n = unit(e);
%
% elegant, but 40x slower than using eig
%
% 3.
%
% Use eigenvectors, get angle from trace which is defined over -pi to
% pi. Don't use eigenvalues since they only give angles -pi/2 to pi/2.
%
% 4.
%
% Take the log of the rotation matrix
Ri = R(:,:,i);
% check the determinant
assert( abs(det(Ri)-1) < 10*eps, 'SMTB:tr2angvec:badarg', 'matrix is not orthonormal');
[th,v] = trlog(Ri);
theta(i) = th;
n(i,:) = v;
if opt.deg
theta(i) = theta(i) * 180/pi;
units = 'deg';
else
units = 'rad';
end
if nargout == 0
% if no output arguments display the angle and vector
fprintf('Rotation: %f %s x [%f %f %f]\n', theta(i), units, n(i,:));
end
end
if nargout == 1
theta_ = theta;
elseif nargout == 2
theta_ = theta;
n_ = n;
end