-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_self_supervised.py
167 lines (131 loc) · 5.38 KB
/
evaluate_self_supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision.transforms.functional import ten_crop
import torchmetrics
from src.model import ResnetMultiProj
from src.data import get_dataset
from src.transform import ValTransform, AugTransform
from src.utils import get_config, get_device
def evaluate_retrain(args):
epochs = args.epochs
config = get_config(args.config)
device = get_device()
ckpt = torch.load(args.ckpt, map_location=device)
# load train dataset
ds_name = config['dataset']['name']
size = config['dataset']['size']
path = config['dataset']['path']
n_classes = config['dataset']['n_classes']
train_trans = AugTransform(ds_name, size)
val_trans = ValTransform(ds_name, size)
train_ds = get_dataset(ds_name, train=True, path=path, transform=train_trans)
val_ds = get_dataset(ds_name, train=False, path=path, transform=val_trans)
batch_size = config['batch_size']
n_workers = config['n_workers']
train_dl = DataLoader(train_ds, batch_size=batch_size, shuffle=True, num_workers=n_workers)
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=False, num_workers=n_workers)
encoder = ResnetMultiProj(**config['encoder']).to(device)
num_features = encoder.num_features
encoder.load_state_dict(ckpt['encoder'])
encoder = encoder.backbone
encoder.eval()
finetuner = nn.Linear(num_features, n_classes).to(device)
if 'online_finetuner' in ckpt.keys():
finetuner.load_state_dict(ckpt['online_finetuner'])
# optimizer
opt = optim.Adam(finetuner.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, args.epochs, eta_min=0)
best_acc = 0
best_epoch = 0
for i in range(epochs):
finetuner.train()
pbar = tqdm(train_dl)
for x, y in pbar:
x, y = x.to(device), y.to(device)
with torch.no_grad():
h = encoder(x)
h = h.detach()
y_hat = finetuner(h)
acc = torchmetrics.functional.accuracy(y_hat, y)
loss = F.cross_entropy(y_hat, y)
opt.zero_grad()
loss.backward()
opt.step()
pbar.set_description(f'Epoch: {i}. Loss: {loss.item():.3f}. Acc: {acc:.3f}')
scheduler.step()
finetuner.eval()
acc = torchmetrics.Accuracy().to(device)
for x, y in tqdm(val_dl):
x, y = x.to(device), y.to(device)
with torch.no_grad():
h = encoder(x)
y_hat = finetuner(h)
acc(y_hat, y)
curr_acc = acc.compute()
print(f'Epoch: {i}, Acc: {curr_acc}')
if curr_acc > best_acc:
best_acc = curr_acc
best_epoch = i
torch.save(finetuner.state_dict(), f'finetuner_{ds_name}_{size}.pth')
print(f'Best epoch: {best_epoch}, Best acc: {best_acc}')
def evaluate_finetuner(args):
config = get_config(args.config)
device = get_device()
ckpt = torch.load(args.ckpt, map_location='cpu')
# load train dataset
ds_name = config['dataset']['name']
size = config['dataset']['size']
path = config['dataset']['path']
n_classes = config['dataset']['n_classes']
val_trans = ValTransform(ds_name, size)
val_ds = get_dataset(ds_name, train=False, path=path, transform=val_trans)
batch_size = config['batch_size']
n_workers = config['n_workers']
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=False, num_workers=n_workers)
encoder = ResnetMultiProj(**config['encoder']).cpu().eval()
encoder.load_state_dict(ckpt['encoder'])
finetuner = nn.Linear(encoder.num_features, n_classes).to(device).eval()
finetuner.load_state_dict(ckpt['online_finetuner'])
encoder = encoder.backbone.to(device)
encoder.requires_grad_(False)
finetuner.requires_grad_(False)
acc = torchmetrics.Accuracy().to(device)
acc_top5 = torchmetrics.Accuracy(top_k=5).to(device)
for (batch_x, batch_y) in tqdm(val_dl, desc='Evaluating'):
batch_x = batch_x.to(device)
batch_y = batch_y.to(device)
batch_x_ten = torch.cat(ten_crop(batch_x, (size, size)))
with torch.no_grad():
h = encoder(batch_x_ten)
logits = finetuner(h)
logits = logits.view(10, -1, logits.shape[-1])
logits_avg = logits.mean(dim=0)
preds = torch.argmax(logits, dim=-1)
mode, _ = torch.mode(preds, dim=0)
curr_acc = acc(logits_avg, batch_y)
curr_acc_5 = acc_top5(logits_avg, batch_y)
print(f'Acc Top 1: {acc.compute()}, acc Top 5: {acc_top5.compute()}')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-c',
help='Path to config',
type=str)
parser.add_argument('--ckpt',
help='Path to checkpoint',
type=str)
parser.add_argument('--epochs', '-e',
help='Number of epochs',
type=int, default=100)
parser.add_argument('--retrain',
action='store_true',
help='If true, linear classifier will be retrained')
args = parser.parse_args()
if args.retrain:
evaluate_retrain(args)
else:
evaluate_finetuner(args)