-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_augmentation.py
134 lines (108 loc) · 4.52 KB
/
data_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
class RandAugment:
def __init__(self, n=9, m=0.5):
self.n = n
self.m = m # [0, 30] in paper, but we use [0, 1] for simplicity
self.augment_list = [
self.auto_contrast, self.equalize, self.rotate, self.solarize,
self.color, self.contrast, self.brightness, self.sharpness,
self.shear_x, self.shear_y, self.translate_x, self.translate_y,
self.posterize, self.solarize_add, self.invert, self.identity
]
def __call__(self, img):
ops = random.choices(self.augment_list, k=self.n)
for op in ops:
img = op(img)
return img
def auto_contrast(self, img):
return ImageOps.autocontrast(img)
def equalize(self, img):
return ImageOps.equalize(img)
def rotate(self, img):
return TF.rotate(img, self.m * 30)
def solarize(self, img):
return TF.solarize(img, int((1 - self.m) * 255))
def color(self, img):
return TF.adjust_saturation(img, 1 + self.m)
def contrast(self, img):
return TF.adjust_contrast(img, 1 + self.m)
def brightness(self, img):
return TF.adjust_brightness(img, 1 + self.m)
def sharpness(self, img):
return ImageEnhance.Sharpness(img).enhance(1 + self.m)
def shear_x(self, img):
return TF.affine(img, 0, [0, 0], 1, [self.m, 0])
def shear_y(self, img):
return TF.affine(img, 0, [0, 0], 1, [0, self.m])
def translate_x(self, img):
return TF.affine(img, 0, [int(self.m * img.size[0] / 3), 0], 1, [0, 0])
def translate_y(self, img):
return TF.affine(img, 0, [0, int(self.m * img.size[1] / 3)], 1, [0, 0])
def posterize(self, img):
return TF.posterize(img, int((1 - self.m) * 8))
def solarize_add(self, img):
return TF.solarize(TF.adjust_brightness(img, 1 + self.m), int((1 - self.m) * 255))
def invert(self, img):
return TF.invert(img) if random.random() < 0.5 else img
def identity(self, img):
return img
class Mixup(nn.Module):
def __init__(self, alpha=0.8):
super().__init__()
self.alpha = alpha
def forward(self, batch):
images, labels = batch
lam = np.random.beta(self.alpha, self.alpha)
batch_size = images.size(0)
index = torch.randperm(batch_size)
mixed_images = lam * images + (1 - lam) * images[index, :]
labels_a, labels_b = labels, labels[index]
return mixed_images, labels_a, labels_b, lam
class CutMix(nn.Module):
def __init__(self, alpha=1.0):
super().__init__()
self.alpha = alpha
def forward(self, batch):
images, labels = batch
lam = np.random.beta(self.alpha, self.alpha)
batch_size, _, H, W = images.shape
cx = np.random.uniform(0, W)
cy = np.random.uniform(0, H)
w = W * np.sqrt(1 - lam)
h = H * np.sqrt(1 - lam)
x0 = int(np.clip(cx - w // 2, 0, W))
y0 = int(np.clip(cy - h // 2, 0, H))
x1 = int(np.clip(cx + w // 2, 0, W))
y1 = int(np.clip(cy + h // 2, 0, H))
index = torch.randperm(batch_size)
images[:, :, y0:y1, x0:x1] = images[index, :, y0:y1, x0:x1]
lam = 1 - ((x1 - x0) * (y1 - y0) / (W * H))
labels_a, labels_b = labels, labels[index]
return images, labels_a, labels_b, lam
class RandomErasing(nn.Module):
def __init__(self, probability=0.25, sl=0.02, sh=0.4, r1=0.3, r2=1/0.3):
super().__init__()
self.probability = probability
self.sl = sl
self.sh = sh
self.r1 = r1
self.r2 = r2
def forward(self, img):
if random.uniform(0, 1) > self.probability:
return img
for attempt in range(100):
area = img.size()[1] * img.size()[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, self.r2)
h = int(round(np.sqrt(target_area * aspect_ratio)))
w = int(round(np.sqrt(target_area / aspect_ratio)))
if w < img.size()[2] and h < img.size()[1]:
x1 = random.randint(0, img.size()[1] - h)
y1 = random.randint(0, img.size()[2] - w)
if img.size()[0] == 3:
img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
img[1, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
img[2, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
else:
img[0, x1:x1+h, y1:y1+w] = random.uniform(0, 1)
return img
return img