-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
110 lines (87 loc) · 3.97 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import cv2
import imutils
import os
from imutils.perspective import four_point_transform
def extract_display(image):
'''
Detect the analog display on a meter
by searching for the largest rectangle shaped contour.
:param image image: image on which to detect display
:return image: cropped detected display
'''
image = imutils.resize(image, height=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 50, 200, 255)
# find contours in the edge map
# then sort them by their size in descending order
contours = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if imutils.is_cv2() else contours[1]
contours = sorted(contours, key=cv2.contourArea, reverse=True)
for contour in contours:
# approximate shape of the polygon
perimeter = cv2.arcLength(contour, True)
epsilon = 0.02 * perimeter
approx = cv2.approxPolyDP(contour, epsilon, True)
# if the contour has four vertices, then we have found the display
if len(approx) == 4:
return four_point_transform(image, approx.reshape(4, 2))
def extract_digits(image):
'''
Extract individual digits from a display by finding the
maximum number of contours smililarly shaped on the x axis.
:param image image: image of analog display on which to detect digits
:return list[image]: list of cropped detected digits
'''
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 50, 200, 255)
# find contours in whole image
contours = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
# sort bounding boxes from left to right
boxes = [cv2.boundingRect(c) for c in contours]
sorted_boxes = sorted(boxes, key=lambda box: box[0])
# finding the maximum number of contours smililarly shaped on the x axis
max_similar_aligned_boxes = []
for box_index in range(len(sorted_boxes)):
aligned_boxes = find_max_similar_aligned_boxes(sorted_boxes[box_index:])
if len(aligned_boxes) > len(max_similar_aligned_boxes):
max_similar_aligned_boxes = aligned_boxes
# crop detected digits
result = []
for box in max_similar_aligned_boxes:
(x,y,w,h) = box
result.append(image[y:y+h, x:x+w])
return result
def find_max_similar_aligned_boxes(boxes, treshold=40):
'''
Find the biggest collection of similar boxes.
:param list boxes: list of bounding rectangle boxes
:param int threshold: maximum percent under which to consider two boxes as similar
:return list: list of boxes similar to the first box in the input
'''
start = boxes[0]
result = [start]
for box in boxes[1:]:
if box_similarity(start, box, 2) < treshold and box_similarity(start, box, 3) < treshold:
result.append(box)
return result
def box_similarity(box_a, box_b, characteristic):
'''
Calculate the similarity for a specific characteristic between two boxes.
:param tuple box_a: bounding rectangle box
:param tuple box_b: bounding rectangle box
:param int characteristic: index of the characteristic inside the tuple (x=0,y=1,w=2,h=3)
:return float: percent of similarity between the two boxes for provided characteristic
'''
return abs(box_a[characteristic] - box_b[characteristic]) / max(box_a[characteristic], box_b[characteristic]) * 100
if __name__ == '__main__':
path = lambda filename: os.path.join(os.path.dirname(__file__), filename)
image_path = path('images/meters/gas.jpg')
image = cv2.imread(image_path)
display = extract_display(image)
cv2.imwrite(path('display.bmp'), display)
digits = extract_digits(display)
for index, digit in enumerate(digits, start=1):
cv2.imwrite(path('display_%s.bmp' % index), digit)