-
Notifications
You must be signed in to change notification settings - Fork 144
/
Copy pathwalker.py
217 lines (170 loc) · 6.99 KB
/
walker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import itertools
import math
import random
import numpy as np
import pandas as pd
from joblib import Parallel, delayed
from tqdm import trange
from alias import alias_sample, create_alias_table
from utils import partition_num
class RandomWalker:
def __init__(self, G, p=1, q=1):
"""
:param G:
:param p: Return parameter,controls the likelihood of immediately revisiting a node in the walk.
:param q: In-out parameter,allows the search to differentiate between “inward” and “outward” nodes
"""
self.G = G
self.p = p
self.q = q
def deepwalk_walk(self, walk_length, start_node):
walk = [start_node]
while len(walk) < walk_length:
cur = walk[-1]
cur_nbrs = list(self.G.neighbors(cur))
if len(cur_nbrs) > 0:
walk.append(random.choice(cur_nbrs))
else:
break
return walk
def node2vec_walk(self, walk_length, start_node):
G = self.G
alias_nodes = self.alias_nodes
alias_edges = self.alias_edges
walk = [start_node]
while len(walk) < walk_length:
cur = walk[-1]
cur_nbrs = list(G.neighbors(cur))
if len(cur_nbrs) > 0:
if len(walk) == 1:
walk.append(
cur_nbrs[alias_sample(alias_nodes[cur][0], alias_nodes[cur][1])])
else:
prev = walk[-2]
edge = (prev, cur)
next_node = cur_nbrs[alias_sample(alias_edges[edge][0],
alias_edges[edge][1])]
walk.append(next_node)
else:
break
return walk
def simulate_walks(self, num_walks, walk_length, workers=1, verbose=0):
G = self.G
nodes = list(G.nodes())
results = Parallel(n_jobs=workers, verbose=verbose, )(
delayed(self._simulate_walks)(nodes, num, walk_length) for num in
partition_num(num_walks, workers))
walks = list(itertools.chain(*results))
return walks
def _simulate_walks(self, nodes, num_walks, walk_length,):
walks = []
for _ in range(num_walks):
random.shuffle(nodes)
for v in nodes:
if self.p == 1 and self.q == 1:
walks.append(self.deepwalk_walk(
walk_length=walk_length, start_node=v))
else:
walks.append(self.node2vec_walk(
walk_length=walk_length, start_node=v))
return walks
def get_alias_edge(self, t, v):
"""
compute unnormalized transition probability between nodes v and its neighbors give the previous visited node t.
:param t:
:param v:
:return:
"""
G = self.G
p = self.p
q = self.q
unnormalized_probs = []
for x in G.neighbors(v):
weight = G[v][x].get('weight', 1.0) # w_vx
if x == t: # d_tx == 0
unnormalized_probs.append(weight/p)
elif G.has_edge(x, t): # d_tx == 1
unnormalized_probs.append(weight)
else: # d_tx > 1
unnormalized_probs.append(weight/q)
norm_const = sum(unnormalized_probs)
normalized_probs = [
float(u_prob)/norm_const for u_prob in unnormalized_probs]
return create_alias_table(normalized_probs)
def preprocess_transition_probs(self):
"""
Preprocessing of transition probabilities for guiding the random walks.
"""
G = self.G
alias_nodes = {}
for node in G.nodes():
unnormalized_probs = [G[node][nbr].get('weight', 1.0) #保存start的邻居节点的权重
for nbr in G.neighbors(node)]
norm_const = sum(unnormalized_probs)
normalized_probs = [
float(u_prob)/norm_const for u_prob in unnormalized_probs] #计算从node到邻居的转移矩阵
alias_nodes[node] = create_alias_table(normalized_probs)
alias_edges = {}
for edge in G.edges():
alias_edges[edge] = self.get_alias_edge(edge[0], edge[1])
self.alias_nodes = alias_nodes
self.alias_edges = alias_edges
return
class BiasedWalker:
def __init__(self, idx2node, temp_path):
self.idx2node = idx2node
self.idx = list(range(len(self.idx2node)))
self.temp_path = temp_path
pass
def simulate_walks(self, num_walks, walk_length, stay_prob=0.3, workers=1, verbose=0):
layers_adj = pd.read_pickle(self.temp_path+'layers_adj.pkl')
layers_alias = pd.read_pickle(self.temp_path+'layers_alias.pkl')
layers_accept = pd.read_pickle(self.temp_path+'layers_accept.pkl')
gamma = pd.read_pickle(self.temp_path+'gamma.pkl')
walks = []
initialLayer = 0
nodes = self.idx # list(self.g.nodes())
results = Parallel(n_jobs=workers, verbose=verbose, )(
delayed(self._simulate_walks)(nodes, num, walk_length, stay_prob, layers_adj, layers_accept, layers_alias, gamma) for num in
partition_num(num_walks, workers))
walks = list(itertools.chain(*results))
return walks
def _simulate_walks(self, nodes, num_walks, walk_length, stay_prob, layers_adj, layers_accept, layers_alias, gamma):
walks = []
for _ in range(num_walks):
random.shuffle(nodes)
for v in nodes:
walks.append(self._exec_random_walk(layers_adj, layers_accept, layers_alias,
v, walk_length, gamma, stay_prob))
return walks
def _exec_random_walk(self, graphs, layers_accept, layers_alias, v, walk_length, gamma, stay_prob=0.3):
initialLayer = 0
layer = initialLayer
path = []
path.append(self.idx2node[v])
while len(path) < walk_length:
r = random.random()
if(r < stay_prob): # same layer
v = chooseNeighbor(v, graphs, layers_alias,
layers_accept, layer)
path.append(self.idx2node[v])
else: # different layer
r = random.random()
try:
x = math.log(gamma[layer][v] + math.e)
p_moveup = (x / (x + 1))
except:
print(layer, v)
raise ValueError()
if(r > p_moveup):
if(layer > initialLayer):
layer = layer - 1
else:
if((layer + 1) in graphs and v in graphs[layer + 1]):
layer = layer + 1
return path
def chooseNeighbor(v, graphs, layers_alias, layers_accept, layer):
v_list = graphs[layer][v]
idx = alias_sample(layers_accept[layer][v], layers_alias[layer][v])
v = v_list[idx]
return v