We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
作者老哥您好,感谢您的分享!
我在复现的RetinaNet-DSHNet过程中发现,self.sampling默认为False,因为tail_retina_head.py中继承的事Anchorhead类,当cls_loss使用FocalLoss时,self.sampling会被设置为False,此时就会使用PseudoSampler而不是您设计的采样方法。请问实验也是基于PseudoSampler跑出来的吗?
另外在Retinanet中采样,我发现您代码中在不满足512*0.25=128个正样本时,直接用负样本补足;仅在满足128个正样本时才去判断是否属于尾部类(或头部类)。裁剪图片送入训练的情况下,一般都是正样本不足128的,这样会出现尾部和头部采样的正样本完全相同,这样是否有意义呢?为什么不在正样本小于128时筛选是否属于尾部类呀?感觉您文章没有描述这一点,请您赐教谢谢!
The text was updated successfully, but these errors were encountered:
作者老哥您好,感谢您的分享! 我在复现的RetinaNet-DSHNet过程中发现,self.sampling默认为False,因为tail_retina_head.py中继承的事Anchorhead类,当cls_loss使用FocalLoss时,self.sampling会被设置为False,此时就会使用PseudoSampler而不是您设计的采样方法。请问实验也是基于PseudoSampler跑出来的吗? 另外在Retinanet中采样,我发现您代码中在不满足512*0.25=128个正样本时,直接用负样本补足;仅在满足128个正样本时才去判断是否属于尾部类(或头部类)。裁剪图片送入训练的情况下,一般都是正样本不足128的,这样会出现尾部和头部采样的正样本完全相同,这样是否有意义呢?为什么不在正样本小于128时筛选是否属于尾部类呀?感觉您文章没有描述这一点,请您赐教谢谢!
你好,我也有同样的问题,请问你获得解答了吗?
Sorry, something went wrong.
No branches or pull requests
作者老哥您好,感谢您的分享!
我在复现的RetinaNet-DSHNet过程中发现,self.sampling默认为False,因为tail_retina_head.py中继承的事Anchorhead类,当cls_loss使用FocalLoss时,self.sampling会被设置为False,此时就会使用PseudoSampler而不是您设计的采样方法。请问实验也是基于PseudoSampler跑出来的吗?
另外在Retinanet中采样,我发现您代码中在不满足512*0.25=128个正样本时,直接用负样本补足;仅在满足128个正样本时才去判断是否属于尾部类(或头部类)。裁剪图片送入训练的情况下,一般都是正样本不足128的,这样会出现尾部和头部采样的正样本完全相同,这样是否有意义呢?为什么不在正样本小于128时筛选是否属于尾部类呀?感觉您文章没有描述这一点,请您赐教谢谢!
The text was updated successfully, but these errors were encountered: