-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathobfs_explainer.py
executable file
·121 lines (100 loc) · 4.19 KB
/
obfs_explainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# -*- coding: utf-8 -*-
import os
import sys
import numpy as np
import tensorflow as tf
from eli5.lime import TextExplainer
from eli5.lime.samplers import MaskingTextSampler
from keras.layers import Dense, LSTM, Bidirectional
from keras.layers.core import Activation
from keras.models import Sequential
from keras.optimizers import Adam
from sklearn.base import TransformerMixin
from src.utils.bin2analysable import tokenizer
from src.utils.config import max_ops_len
def create_model(act_space=10, lr=0.0001):
model = Sequential()
# model.add(Embedding(input_dim=instrs_size, output_dim=2, input_length=state_shape[0]))
model.add(Bidirectional(LSTM(units=512, return_sequences=True)))
model.add(LSTM(units=512))
model.add(Dense(units=512, activation='relu'))
model.add(Dense(units=act_space))
model.compile(loss="mean_squared_error",
optimizer=Adam(lr=lr))
return model
def load_model(path):
model = create_model(act_space=10)
model.build(input_shape=(None, 1, max_ops_len))
model.load_weights(path)
return model
class StrategySelector(TransformerMixin):
def __init__(self, model):
super(StrategySelector, self).__init__()
self.model = model
self.softmax_model = Sequential([Activation('softmax')])
@staticmethod
def preprocess(op_codes):
res = tokenizer.texts_to_sequences(op_codes)
for i in range(len(res)):
if len(res[i]) < max_ops_len:
res[i].extend([0 for _ in range(max_ops_len - len(res[i]))])
else:
res[i] = res[i][:max_ops_len]
return np.array(res).reshape(len(res), 1, max_ops_len)
def fit(self, X, y):
self.model.fit(X, y)
def predict_proba(self, op_codes):
X = self.preprocess(op_codes)
preds = self.model.predict(X)
softmax = self.softmax_model.predict(preds)
return softmax
def predict(self, op_codes):
print(len(op_codes), file=sys.stderr)
X = self.preprocess(op_codes)
return np.argmax(self.model.predict(X))
def score(self, X, y):
y_pred = self.prefict(X)
count = 0
for i in range(len(y)):
if y_pred[i] == y[i]:
count += 1
return count / len(y)
# opcode_explainer = TextExplainer(random_state=59)
# op_vec = CountVectorizer(ngram_range=(1, 1))
# op_vec = CountVectorizer(token_pattern='[a-z][a-z]*')
ops_sampler = MaskingTextSampler(token_pattern='[a-z][a-z]*', replacement='mov', bow=False, min_replace=0.0,
max_replace=0.5)
iteration = 100
bin_name = 'sum'
with tf.device('/gpu:0'):
obfs_model = load_model('/home/hwangdz/export-d1/rl-select-div-out-keras-9.7-1-%s/checkpoints/dqn_model-%d'
% (bin_name, iteration))
ss = StrategySelector(obfs_model)
# opcodes_dir = '/home/hwangdz/coreutils/coreutils-8.28/install_m32/bin/md5funcs_ops'
opcodes_dir = '/home/hwangdz/git/rl-select-div/only-similarity/explanation/%s_ops_info' % bin_name
output_dir = 'explanation/%s_html' % bin_name
if not os.path.isdir(output_dir):
os.mkdir(output_dir)
for file_name in os.listdir(opcodes_dir):
# if file_name != 'dump.s':
# continue
if file_name == 'op_distribution':
continue
file_path = os.path.join(opcodes_dir, file_name)
with open(file_path, 'r') as f:
op_codes = f.read()
if len(op_codes) < 20:
continue
num_ops = len(op_codes.split())
op_codes = op_codes.replace('\n', ' ')
opcode_explainer = TextExplainer(random_state=59, sampler=ops_sampler, n_samples=5000)
#repeat_times = (len(op_codes.split()) / 100) ** 2
repeat_times = 1
for _ in range(repeat_times):
opcode_explainer.fit(op_codes, ss.predict_proba)
explanation = opcode_explainer.explain_prediction()._repr_html_()
with open('explanation/%s_html/explanation-%s.html' % (bin_name, file_name), 'w') as ef:
ef.write(explanation)
ef.write('num of opcodes: %d\n' % num_ops)
ef.write('</br>\n')
ef.write(op_codes)