-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmainP2P.m
171 lines (142 loc) · 6.03 KB
/
mainP2P.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
% Massive P2P MIMO, hybrid RF-baseband precoding
% By Le Liang, UVic, July 2, 2014
clear all; clc; tic;
% randn('state', 5);
display('Loading channel ...')
% load E:\MatlabData\mmWaveChanH.mat % Leyuan's channel data
load E:\MatlabData\DIRchannel-Nt64-Nr16-Ncls8-Nray10-channNum1000.mat
% load E:\MatlabData\OMNIchannel-Nt64-Nr16-Ncls8-Nray10-channNum1000.mat
display('Successful!')
Nt = 64;
Nr = 16;
Ns = 2;
L = 2; % #chains at TX/RX
Ncls = 8;% #clusters
Nray = 10;% #rays per cluster
SNR = -30 : 5 : 0;
nSNR = length(SNR);
channNum = 1e3;
% ============== channelSet to get a bunch of channels =================
% [genH, genAlpha, genAt, genAr] = channelSet(sqrt(Nt)*ones(2,1), ...
% sqrt(Nr)*ones(2,1), Ncls, Nray, channNum);
% ======================================================================
rateSvdEq = zeros(nSNR, 1);
rateSpaEq = zeros(nSNR, 1);% spatially sparse precoding of Heath's paper
rateHybEq = zeros(nSNR, 1);
rateSvdWf = zeros(nSNR, 1);% water-filling capacity
rateSpaWf = zeros(nSNR, 1);
rateHybWf = zeros(nSNR, 1);
for isnr = 1 : nSNR
P = 10^(SNR(isnr)/10);
for ichannel = 1 : channNum
H = genH(:, :, ichannel);% channel instantiation from channel set
At = genAt(:, :, ichannel);
Ar = genAr(:, :, ichannel);
% H = chanH(:, :, ichannel); % Leyuan's channel data
% At = reshape(aAntArrayTX(:, :, :, ichannel), [Nt, Ncls*Nray]);
% Ar = reshape(aAntArrayRX(:, :, :, ichannel), [Nr, Ncls*Nray]);
%
[U, S, V] = svd(H);
%==================================================================
% =========== optimum uncontrained precoding based on SVD =========
%==================================================================
Topt = V(:, 1:Ns);% TX precoding matrix
Wopt = U(:, 1:Ns)';% RX combining matrix
% ====== water-filling power allocation
% gain = diag(S);
% RsWf = waterfill(P, gain(1:Ns));% power allocation
% RsWf = diag(RsWf);
% ====== equal power allocation
RsEq = P/Ns*eye(Ns);
Rn = Wopt*Wopt';
WHT = Wopt*H*Topt;
rateTmpEq = log2(det(eye(Ns) + inv(Rn)*WHT*RsEq*WHT'));
rateSvdEq(isnr) = rateSvdEq(isnr) + rateTmpEq;
% rateTmpWf = log2(det(eye(Ns) + inv(Rn)*WHT*RsWf*WHT'));
% rateSvdWf(isnr) = rateSvdWf(isnr) + rateTmpWf;
%==================================================================
% ============ Spatially sparse precoding =========================
%==================================================================
[Tf, Tb] = CalSparsePrecoder(At, V(:, 1:Ns), L);% equal power
% [TfWf, TbWf] = CalSparsePrecoder(At, V(:, 1:Ns)*sqrt(RsWf), L);% waterfillling
[Wf, Wb] = CalSparsePrecoder(Ar, U(:, 1:Ns), L);
T = Tf*Tb;
% TWf = TfWf*TbWf;
W = (Wf*Wb)';
Rs = P/Ns*eye(Ns);% power allocation embedded in precoding
Rn = W*W';
WHT = W*H*T;
% WHTWf = W*H*TWf;
rateTmpEq = log2(det(eye(Ns) + inv(Rn)*WHT*Rs*WHT'));
rateSpaEq(isnr) = rateSpaEq(isnr) + rateTmpEq;
% rateTmpWf = log2(det(eye(Ns) + inv(Rn)*WHTWf*Rs*WHTWf'));
% rateSpaWf(isnr) = rateSpaWf(isnr) + rateTmpWf;
%==================================================================
% ============ Hybrid RF-baseband precoding =======================
%==================================================================
% Tf = zeros(Nt, L);% TX RF precoding
% Wf = zeros(Nr, L);% RX RF precoding
% for ichain = 1 : L
% Tf(:, ichain) = 1/sqrt(Nt)*exp(j*phase(V(:, ichain)));
% Wf(:, ichain) = 1/sqrt(Nr)*exp(j*phase(U(:, ichain)));
% end
% =========== PINV ===========
% Wb = pinv(Wf)*V(:,1:L);
% Tb = U(:,1:L)'*pinv(Tf);
% ============================
% ========== SVD =============
[Ueq, Seq, Veq] = svd(Wf'*H*Tf);
Tb = Veq(:, 1:Ns);% TX baseband precoding
Wb = Ueq(:, 1:Ns);% RX baseband precoding
% gain_eq = diag(Seq);% vectorize
% Gamma_eq = waterfill(P, gain_eq(1:Ns));% power allocation
% Gamma_eq = diag(Gamma_eq);
% TbWf = Tb*sqrt(Gamma_eq);
T = Tf*Tb*sqrt(Ns)/norm(Tf*Tb, 'fro');
% TWf = Tf*TbWf*sqrt(Ns)/norm(Tf*TbWf, 'fro');
W = (Wf*Wb)';
Rn = W*W';
Rs = P/Ns*eye(Ns);
WHT = W*H*T;
% WHTWf = W*H*TWf;
rateTmpEq = log2(det(eye(Ns) + inv(Rn)*WHT*Rs*WHT'));
rateHybEq(isnr) = rateHybEq(isnr) + rateTmpEq;
% rateTmpWf = log2(det(eye(Ns) + inv(Rn)*WHTWf*Rs*WHTWf'));
% rateHybWf(isnr) = rateHybWf(isnr) + rateTmpWf;
end
isnr
end
rateSvdEq = rateSvdEq/channNum;
rateHybEq = rateHybEq/channNum;
rateSpaEq = rateSpaEq/channNum;
rateSvdWf = rateSvdWf/channNum;
rateHybWf = rateHybWf/channNum;
rateSpaWf = rateSpaWf/channNum;
%%%%%%% Figure plotting for mmWave channel
figure
lw = 1.5;
ms = 6;
plot(SNR, abs(rateSvdEq), 'k-*', 'LineWidth', lw, 'MarkerSize', ms)
hold on
plot(SNR, abs(rateSpaEq), 'b-o', 'LineWidth', lw, 'MarkerSize', ms)
hold on
plot(SNR, abs(rateHybEq), 'r-^', 'LineWidth', lw, 'MarkerSize', ms)
% hold on
% plot(SNR, abs(rateSvdWf), 'k-x', 'LineWidth', lw, 'MarkerSize', ms)
% hold on
% plot(SNR, abs(rateSpaWf), 'b-d', 'LineWidth', lw, 'MarkerSize', ms)
% hold on
% plot(SNR, abs(rateHybWf), 'r-v', 'LineWidth', lw, 'MarkerSize', ms)
hold off
legend('Optimum SVD', 'Sparse precoding & Combining', 'Hybrid', ...
'Optimum SVD Waterfilling', 'Sparse precoding & Combining Wf', 'Hybrid Wf')
xlabel('SNR (dB)')
ylabel('Sum spectral efficiency (bps/Hz)')
title(sprintf('Nt = %d, Nr = %d, Ncls = %d, Nray = %d, Ns = %d, L = %d',...
Nt,Nr,Ncls,Nray,Ns,L))
grid
% saveas(gcf, sprintf('mmWaveP2P-Nt%d-Nr%d-Ncls%d-Nray%d-Ns%d-L%d',Nt,Nr,Ncls,...
% % Nray,Ns,L));% ULA
% saveas(gcf, sprintf('UPAmmWaveP2P-Nt%d-Nr%d-Ncls%d-Nray%d-Ns%d-L%d',Nt,Nr,Ncls,...
% Nray,Ns,L));% UPA
toc