-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmassiveBD_mmwave_limit_nbs.m
248 lines (199 loc) · 8.17 KB
/
massiveBD_mmwave_limit_nbs.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
% Study capacity performance of BD in massive MIMO
% Hybrid precoding VS full-complexity BD
% By Weiheng Ni, UVic, Oct. 27, 2013
% Modified July 16, 2014
tic; clear all; clc;
% =============================================
% ============ Parameter settings =============
% =============================================
NtSet = 32:64:512;
nNt = length(NtSet);
rateBD = zeros(nNt, 1); % full-complexity BD
rateSpa = zeros(nNt, 1); % Hybrid BD based on sparse precoding
rateRxMmse = zeros(nNt, 1); % MMSE at RX
ratephaseBD_ar = zeros(nNt, 1); % Phase + BB-BD
ratephaseBD_dft = zeros(nNt, 1); % Phase + BB-BD
ratephaseBD_svd_dft = zeros(nNt, 1);
ratephaseBD_svd_ar = zeros(nNt, 1);
rateLF = zeros(nNt, 1);
rateAL = zeros(nNt, 1);
Nr = 64;
type = 1;
K = 2; % User number
Ns = 1; % #streams per user
Lr = 1; % #chains per user
Lt = Lr*K; % #chain at BS
% randn('state', 3);
SNR = 0;
P = 10^(SNR/10);
Ncls = 1;
Nray = 1;
channNum = 200; % For each user
large_fa_loss = 0.2; % large scale fading lower bound
for iNt = 1:1:nNt
Nt = NtSet(iNt);
Nr = Nt / (2*K);
display('Channel Loading ...')
genH = zeros(Nr, Nt, channNum*K);
genAlpha = zeros(Ncls*Nray, channNum*K);
genAt = zeros(Nt, Ncls*Nray, channNum*K);
genAr = zeros(Nr, Ncls*Nray, channNum*K);
for k = 1:K
if type == 1
DirTX = [-60 60]*pi/180 + 2*pi*rand();
DirRX = [-180 180]*pi/180;
else
DirTX = [-60 60; -60 60]*pi/180 + 2*pi*rand();
DirRX = [-180 180; -180 180]*pi/180;
end
[genH(:, :, (1:channNum)+(k-1)*channNum), genAlpha(:, (1:channNum)+(k-1)*channNum), ...
genAt(:, :, (1:channNum)+(k-1)*channNum), genAr(:,:,(1:channNum)+(k-1)*channNum)]...
= channelSet(Nt, Nr, Ncls, Nray, channNum, DirTX, DirRX, large_fa_loss);
end
display('Successful!');
j = sqrt(-1);
for ichannel = 1 : channNum
% ============= channel generation =====================
H = zeros(K*Nr, Nt);
Hcell = cell(K, 1);
At = cell(K, 1);
Ar = cell(K, 1);
Alpha = cell(K, 1);
for k = 1:K
Hcell{k} = genH(:, :, ichannel + channNum * (k-1));
H((k-1)*Nr + (1:Nr), 1:Nt) = Hcell{k};
At{k} = genAt(:, :, ichannel + channNum * (k-1));
Ar{k} = genAr(:, :, ichannel + channNum * (k-1));
Alpha{k} = genAlpha(:, ichannel + channNum * (k-1));
end
Rs = P/(K*Ns)*eye(K*Ns);
% ================= BD precoding =====================
[TBD, WBD] = CalPrecoderBD(H, K, Ns);% BD precoding & combining
HH = H*TBD;
WW = zeros(K*Ns, K*Nr);
for k = 1:K
WW((k-1)*Ns + (1:Ns), (k-1)*Nr + (1:Nr)) = WBD((k-1)*Ns + (1:Ns), 1:Nr);
end
vec_power_gain = diag(abs(WW*HH)).^2;
vec_base_level = ones(K*Ns, 1) ./ vec_power_gain;
vec_power_alloc = water_filling(P, vec_base_level);
Fwf = diag(sqrt(K*Ns*vec_power_alloc/P));
TBDwf = TBD*Fwf;
rateBD(iNt) = rateBD(iNt) + calRateMU(H, TBDwf, WBD, Rs, Ns*ones(K,1));
% ================= Sparse Hybrid BD ================
Tf = cell(K, 1);
Tb = cell(K, 1);
Tspa = zeros(Nt, K*Ns);
Wf = cell(K, 1);
Wb = cell(K, 1);
Wspa = zeros(K*Ns, Nr);
for k = 1:K
[Tf{k}, Tb{k}] = CalSparsePrecoder(At{k}, TBD(:, (k-1)*Ns + (1:Ns)), Lt/K);
Tspa(:, (k-1)*Ns + (1:Ns)) = Tf{k}*Tb{k};
[Wf{k}, Wb{k}] = CalSparsePrecoder(Ar{k}, WBD((k-1)*Ns + (1:Ns), :)', Lr);
Wspa((k-1)*Ns + (1:Ns), :) = (Wf{k}*Wb{k})';
end
rateSpa(iNt) = rateSpa(iNt) + calRateMU(H, Tspa, Wspa, Rs, Ns*ones(K,1));
% ================= Limited Feedback ================
Wff = zeros(Nr, K*Lr);
Trf = zeros(Nt, K*Lr);
Heq = zeros(K*Lr, Nt);
Heq2 = zeros(K*Lr, Nt);
for k = 1:K
[Trf(:, (k-1)*Lr + (1:Lr)), Wff(:, (k-1)*Lr + (1:Lr))] = limited_feedback_bases(Hcell{k}, 1, At{k}, Ar{k});
Heq((k-1)*Lr + (1:Lr), :) = Wff(:, (k-1)*Lr + (1:Lr))' * Hcell{k} ;
end
Hbb = Heq*Trf;
TBB = Hbb' / (Hbb * Hbb');
Wlf = zeros(K*Ns, Nr);
for k = 1:K
Wlf((k-1)*Ns + (1:Ns), :) = (Wff(:, (k-1)*Lr + (1:Lr))');
end
vec_power_gain = diag(abs(Hbb*TBB)).^2;
vec_base_level = ones(K*Ns, 1) ./ vec_power_gain;
vec_power_alloc = water_filling(P, vec_base_level);
Fwf = diag(sqrt(K*Ns*vec_power_alloc/P));
Tlf = Trf*TBB*Fwf*sqrt(K*Ns)/norm(Trf*TBB*Fwf, 'fro');
rateLF(iNt) = rateLF(iNt) + calRateMU(H, Tlf, Wlf, Rs, Ns*ones(K,1));
% ==================phase + BD (DFT)====================
Wff = zeros(Nr, K*Lr);
Wff2 = zeros(Nr, K*Lr);
Heq = zeros(K*Lr, Nt);
for k = 1:K
Wff(:, (k-1)*Lr + (1:Lr)) = select_wf_bases(Hcell{k}, 1, 1/sqrt(Nr) * dftmtx(Nr), Lr);
Heq((k-1)*Lr + (1:Lr), :) = Wff(:, (k-1)*Lr + (1:Lr))' * Hcell{k};
end
% Wff = [Ar{:}];
% for k = 1:K
% Heq((k-1)*Lr + (1:Lr), :) = Wff(:, (k-1)*Lr + (1:Lr))' * Hcell{k};
% end
Wff2 = [Ar{:}];
for k = 1:K
Heq2((k-1)*Lr + (1:Lr), :) = Wff2(:, (k-1)*Lr + (1:Lr))' * Hcell{k};
end
Trf = exp(-j*angle(Heq2)') / sqrt(Nt);
Hbb2 = Heq2 * Trf;
Trf = exp(-j*angle(Heq)') / sqrt(Nt);
Hbb = Heq * Trf;
[TBD, WBD] = CalPrecoderBD(Hbb, K, Ns);
HH = Hbb*TBD;
WW = zeros(K*Ns, K*Lr);
for k = 1:K
WW((k-1)*Ns + (1:Ns), (k-1)*Lr + (1:Lr)) = WBD((k-1)*Ns + (1:Ns), :);
end
vec_power_gain = diag(abs(WW*HH)).^2;
vec_base_level = ones(K*Ns, 1) ./ vec_power_gain;
vec_power_alloc = water_filling(P, vec_base_level);
Fwf = diag(sqrt(K*Ns*vec_power_alloc/P));
WphaseBD = zeros(K*Ns, Nr);
for k = 1:K
WphaseBD((k-1)*Ns + (1:Ns), :) = WBD((k-1)*Ns + (1:Ns), :) * (Wff(:, (k-1)*Lr + (1:Lr))');
end
TBD = TBD*sqrt(K*Ns)/norm(Trf*TBD*Fwf, 'fro');
TphaseBD = Trf*TBD*Fwf;
ratephaseBD_dft(iNt) = ratephaseBD_dft(iNt) + calRateMU(H, TphaseBD, WphaseBD, Rs, Ns*ones(K,1));
%========================alpha=====================
Wal = ones(K*Lr, 1);
%Aal = diag(diag(Hbb2));
Aal = diag([Alpha{:}]);
vec_power_gain = diag(abs(Aal)).^2;
vec_base_level = ones(K*Ns, 1) ./ vec_power_gain;
vec_power_alloc = water_filling(P, vec_base_level);
Fwf = diag(sqrt(K*Ns*vec_power_alloc/P));
Tal = Fwf;
rateAL(iNt) = rateAL(iNt) + calRateMU(Aal, Tal, Wal, Rs, Ns*ones(K, 1));
end
fprintf('Nt = %d\n', NtSet(iNt));
end
rateBD = rateBD/channNum;
rateSpa = rateSpa/channNum;
rateRxMmse = rateRxMmse/channNum;
ratephaseBD_ar = ratephaseBD_ar/channNum;
ratephaseBD_dft = ratephaseBD_dft/channNum;
ratephaseBD_svd_dft = ratephaseBD_svd_dft/channNum;
ratephaseBD_svd_ar = ratephaseBD_svd_ar/channNum;
rateLF = rateLF/channNum;
rateAL = rateAL/channNum;
%%%%% Plotting
rateMat = [rateBD, rateSpa, ratephaseBD_dft, rateLF];
figure
lw = 1.5;
ms = 5;
hold on
plot(NtSet, abs(rateBD), 'k-*', 'LineWidth', lw, 'MarkerSize', ms)
plot(NtSet, abs(ratephaseBD_dft), 'b--', 'LineWidth', lw, 'MarkerSize', ms)
plot(NtSet, abs(rateAL), 'bv', 'LineWidth', lw, 'MarkerSize', ms)
plot(NtSet, abs(rateLF), 'g-o', 'LineWidth', lw, 'MarkerSize', ms)
hold off
legend('Full-Complexity BD', 'Hybrid BD', 'Upper Bound', 'Limited Feedback')
xlabel('N_{BS}')
ylabel('Sum spectral efficiency (bps/Hz)')
title(sprintf('Nt = %d, Nr = %d, K = %d, Ns = %d, Lr = %d, Lt = %d, Ncls = %d, Nray = %d', ...
Nt, Nr, K, Ns, Lr, Lt, Ncls, Nray))
grid
filename = sprintf('ALpha-Nt%d-K%d-Nr%d-Ns%d-Lr%d-Lt%d-Ncls%d-Nray%d', Nt, K, Nr, Ns, ...
Lr,Lt,Ncls,Nray);
save(filename, 'rateMat')
% saveas(gcf, sprintf('BD-Nt%d-K%d-Nr%d-Ns%d-Lr%d-Lt%d-Ncls%d-Nray%d', Nt, K, Nr, Ns, ...
% Lr,Lt,Ncls,Nray));
toc