-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathevaluate.py
59 lines (44 loc) · 1.78 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import argparse
from tqdm import tqdm
import os
import PIL.Image as Image
import torch
from model import Net
parser = argparse.ArgumentParser(description='RecVis A3 evaluation script')
parser.add_argument('--data', type=str, default='bird_dataset', metavar='D',
help="folder where data is located. test_images/ need to be found in the folder")
parser.add_argument('--model', type=str, metavar='M',
help="the model file to be evaluated. Usually it is of the form model_X.pth")
parser.add_argument('--outfile', type=str, default='experiment/kaggle.csv', metavar='D',
help="name of the output csv file")
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
state_dict = torch.load(args.model)
model = Net()
model.load_state_dict(state_dict)
model.eval()
if use_cuda:
print('Using GPU')
model.cuda()
else:
print('Using CPU')
from data import data_transforms
test_dir = args.data + '/test_images/mistery_category'
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
with Image.open(f) as img:
return img.convert('RGB')
output_file = open(args.outfile, "w")
output_file.write("Id,Category\n")
for f in tqdm(os.listdir(test_dir)):
if 'jpg' in f:
data = data_transforms(pil_loader(test_dir + '/' + f))
data = data.view(1, data.size(0), data.size(1), data.size(2))
if use_cuda:
data = data.cuda()
output = model(data)
pred = output.data.max(1, keepdim=True)[1]
output_file.write("%s,%d\n" % (f[:-4], pred))
output_file.close()
print("Succesfully wrote " + args.outfile + ', you can upload this file to the kaggle competition website')