-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnutrient_functions.py
943 lines (802 loc) · 41.5 KB
/
nutrient_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Oct 28 15:43:32 2020
@author: jolenebritton
"""
import numpy as np
# import operator
from scipy.linalg import solve_banded
import helper_functions as hf
import growth_functions as gf
params, config = hf.get_configs('parameters.ini')
# ----------------------------------------------------------------------------
# EXTERNAL NUTRIENT FUNCTIONS
# ----------------------------------------------------------------------------
def diffusion_ADI(sub_e):
"""
Parameters
----------
sub_e : array (2D)
The 2D grid storing values of glucose in the external domain.
Returns
-------
sub_e_step2 : array (2D)
The updated 2D grid storing values of glucose in the external domain
after diffusion using the finite difference alternating-direction method
which is implicit.
Purpose
-------
Want to solve Ax = b, where
A = tri-diagonal matrix (-r, 1+2r, -r)
b = -r*u^k_{i-1,j} + (1-2r)*u^k_{i,j} - r*u^k_{i+1,j} (for Step 1)
or
b = -r*u^{k+1/2}_{i,j-1} + (1-2r)*u^{k+1/2}_{i,j} - r*u^{k+1/2}_{i,j+1} (for Step 2)
But we can write the tri-diag matrix as a banded matrix
"""
# Create tri-diagonal matrix
num_rows = np.shape(sub_e)[0]
num_cols = np.shape(sub_e)[1]
r_coeff = (params['dt_e']*params['diffusion_e_gluc'])/(2*params['dy']**2)
banded_mat_rows = np.tile(np.array([-r_coeff, (1+2*r_coeff), -r_coeff]).reshape(3,1),num_cols)
banded_mat_cols = np.tile(np.array([-r_coeff, (1+2*r_coeff), -r_coeff]).reshape(3,1),num_rows)
# Adjust the matrices
banded_mat_rows[0, 0] = 0
banded_mat_rows[2, num_cols-1] = 0
banded_mat_cols[0, 0] = 0
banded_mat_cols[2, num_cols-1] = 0
# Step 1: k+1/2 values - Loop through the rows
sub_e_step1 = np.zeros((num_rows,num_cols))
for row in range(num_rows):
# Create the right hand side
if row == 0:
rhs_step1 = (r_coeff*params['init_sub_e_gluc']
+ (1-2*r_coeff)*sub_e[row,:]
+ r_coeff*sub_e[row+1,:])
elif row == num_rows-1:
rhs_step1 = (r_coeff*sub_e[row-1,:]
+ (1-2*r_coeff)*sub_e[row,:]
+ r_coeff*params['init_sub_e_gluc'])
else:
rhs_step1 = (r_coeff*sub_e[row-1,:]
+ (1-2*r_coeff)*sub_e[row,:]
+ r_coeff*sub_e[row+1,:])
rhs_step1[0] += r_coeff*params['init_sub_e_gluc']
rhs_step1[num_cols-1] += r_coeff*params['init_sub_e_gluc']
# Solve the matrix problem: tri_diag_rows*sub_e^{k+1/2} = rhs
sub_e_step1[row,:] = solve_banded((1,1), banded_mat_rows, rhs_step1)
# breakpoint()
# Step 2: k+1 values - Loop through the columns
sub_e_step2 = np.zeros((num_rows,num_cols))
for col in range(num_cols):
# Create the right hand side
if col == 0:
rhs_step2 = (r_coeff*params['init_sub_e_gluc']
+ (1-2*r_coeff)*sub_e_step1[:,col]
+ r_coeff*sub_e_step1[:,col+1])
elif col == num_cols-1:
rhs_step2 = (r_coeff*sub_e_step1[:,col-1]
+ (1-2*r_coeff)*sub_e_step1[:,col]
+ r_coeff*params['init_sub_e_gluc'])
else:
rhs_step2 = (r_coeff*sub_e_step1[:,col-1]
+ (1-2*r_coeff)*sub_e_step1[:,col]
+ r_coeff*sub_e_step1[:,col+1])
rhs_step2[0] += r_coeff*params['init_sub_e_gluc']
rhs_step2[num_rows-1] += r_coeff*params['init_sub_e_gluc']
# Solve the matrix problem: tri_diag_rows*sub_e^{k+1} = rhs
sub_e_step2[:,col] = solve_banded((1,1), banded_mat_cols, rhs_step2)
# breakpoint()
# if np.min(sub_e_step2) < 0:
# breakpoint()
return sub_e_step2
def diffusion_ADI_treha(sub_e):
"""
Parameters
----------
sub_e : array (2D)
The 2D grid storing values of glucose in the external domain.
Returns
-------
sub_e_step2 : array (2D)
The updated 2D grid storing values of glucose in the external domain
after diffusion using the finite difference alternating-direction method
which is implicit.
Purpose
-------
Want to solve Ax = b, where
A = tri-diagonal matrix (-r, 1+2r, -r)
b = -r*u^k_{i-1,j} + (1-2r)*u^k_{i,j} - r*u^k_{i+1,j} (for Step 1)
or
b = -r*u^{k+1/2}_{i,j-1} + (1-2r)*u^{k+1/2}_{i,j} - r*u^{k+1/2}_{i,j+1} (for Step 2)
But we can write the tri-diag matrix as a banded matrix
"""
# Create tri-diagonal matrix
# breakpoint()
num_rows = np.shape(sub_e)[0]
num_cols = np.shape(sub_e)[1]
r_coeff = (params['dt_e']*params['diffusion_e_gluc'])/(2*params['dy']**2)
banded_mat_rows = np.tile(np.array([-r_coeff, (1+2*r_coeff), -r_coeff]).reshape(3,1),num_cols)
banded_mat_cols = np.tile(np.array([-r_coeff, (1+2*r_coeff), -r_coeff]).reshape(3,1),num_rows)
# Adjust the matrices
banded_mat_rows[0, 0] = 0
banded_mat_rows[2, num_cols-1] = 0
banded_mat_cols[0, 0] = 0
banded_mat_cols[2, num_cols-1] = 0
# Step 1: k+1/2 values - Loop through the rows
sub_e_step1 = np.zeros((num_rows,num_cols))
# for row in range(num_rows):
for row in range(1,num_rows-1):
# Create the right hand side
if row == 0:
rhs_step1 = (r_coeff*params['init_sub_e_treha']
+ (1-2*r_coeff)*sub_e[row,:]
+ r_coeff*sub_e[row+1,:])
elif row == num_rows-1:
rhs_step1 = (r_coeff*sub_e[row-1,:]
+ (1-2*r_coeff)*sub_e[row,:]
+ r_coeff*params['init_sub_e_treha'])
else:
rhs_step1 = (r_coeff*sub_e[row-1,:]
+ (1-2*r_coeff)*sub_e[row,:]
+ r_coeff*sub_e[row+1,:])
rhs_step1[0] += r_coeff*params['init_sub_e_treha']
rhs_step1[num_cols-1] += r_coeff*params['init_sub_e_treha']
# Solve the matrix problem: tri_diag_rows*sub_e^{k+1/2} = rhs
sub_e_step1[row,:] = solve_banded((1,1), banded_mat_rows, rhs_step1)
# breakpoint()
# Step 2: k+1 values - Loop through the columns
sub_e_step2 = np.zeros((num_rows,num_cols))
# for col in range(num_cols):
for col in range(1,num_cols-1):
# Create the right hand side
if col == 0:
rhs_step2 = (r_coeff*params['init_sub_e_treha']
+ (1-2*r_coeff)*sub_e_step1[:,col]
+ r_coeff*sub_e_step1[:,col+1])
elif col == num_cols-1:
rhs_step2 = (r_coeff*sub_e_step1[:,col-1]
+ (1-2*r_coeff)*sub_e_step1[:,col]
+ r_coeff*params['init_sub_e_treha'])
else:
rhs_step2 = (r_coeff*sub_e_step1[:,col-1]
+ (1-2*r_coeff)*sub_e_step1[:,col]
+ r_coeff*sub_e_step1[:,col+1])
rhs_step2[0] += r_coeff*params['init_sub_e_treha']
rhs_step2[num_rows-1] += r_coeff*params['init_sub_e_treha']
# Solve the matrix problem: tri_diag_rows*sub_e^{k+1} = rhs
sub_e_step2[:,col] = solve_banded((1,1), banded_mat_cols, rhs_step2)
# breakpoint()
# if np.min(sub_e_step2) < 0:
# breakpoint()
return sub_e_step2
# ----------------------------------------------------------------------------
# TRANSLOCATION FUNCTIONS
# ----------------------------------------------------------------------------
## This is the old method where the distance to tip is calculated solely on
## how close a segment is to a tip
def distance_to_tip(mycelia, num_total_segs):
"""
Parameters
----------
mycelia : dictionary
Stores structural information of mycelia colony for all hyphal segments.
num_total_segs : int
Current total number of segments in the mycelium.
Returns
-------
dtt : array
Contains the distance each segment is away from the nearest tip segment.
"""
# Initialize dist to tip as all ones
dtt = -1*np.ones((num_total_segs,1))
non_null_segs = np.where(mycelia['branch_id'][:num_total_segs] > -1)[0]
null_segs = np.where(mycelia['branch_id'][:num_total_segs] == -1)[0]
if any(i in null_segs for i in non_null_segs):
breakpoint()
# If a segment is a tip, it has a distance to tip of 0
tip_segs = np.where(mycelia['is_tip'][:num_total_segs])[0]
dtt[tip_segs] = 0
dtt[null_segs] = 1e12
# If a segment is a neighbor of a tip, it has a distance to tip (dtt) of 1
# If a segment is a neighbor of a segment with dtt of i, it has a dtt of i+1
current_dist = 1
while min(dtt[non_null_segs]) < 0:
#breakpoint()
# print('current_dist = ', current_dist)
# Loop through all segments
for idx in range(num_total_segs):
# breakpoint()
# print(idx, dtt[idx], mycelia['nbr_idxs'][idx], dtt[mycelia['nbr_idxs'][idx]])
#breakpoint()
# Only consider segments that have not yet been assigned (i.e dtt = -1)
# Only consider segments with a neighbor that has dtt=current_dist-1
if dtt[idx] == -1 and (current_dist-1) in dtt[mycelia['nbr_idxs'][idx]]:
dtt[idx] = current_dist
# Increase the current distance from the tip
current_dist += 1
# This should not happen
# Only triggered if a segment is missed
# if current_dist > num_total_segs:
# breakpoint()
# breakpoint()
return dtt
## Newer version of active transport, where distance to tip is calculated
## with bias toward tip of the same branch.
def distance_to_tip_new(mycelia, num_total_segs):
"""
Parameters
----------
mycelia : dictionary
Stores structural information of mycelia colony for all hyphal segments.
num_total_segs : int
Current total number of segments in the mycelium.
Returns
-------
dtt : array
Contains the distance each segment is away from the nearest tip segment.
"""
allow_reverse_transport = 0
if allow_reverse_transport == 1:
# Initialize dist to tip as all ones
dtt = -1*np.ones((num_total_segs,1))
non_null_segs = np.where(mycelia['branch_id'][:num_total_segs] > -1)[0]
null_segs = np.where(mycelia['branch_id'][:num_total_segs] == -1)[0]
if any(i in null_segs for i in non_null_segs):
breakpoint()
# If a segment is a tip, it has a distance to tip of 0
tip_segs = np.where(mycelia['is_tip'][:num_total_segs])[0]
dtt[tip_segs] = 0
dtt[null_segs] = 1e12
# If a segment is a neighbor of a tip, it has a distance to tip (dtt) of 1
# If a segment is a neighbor of a segment with dtt of i, it has a dtt of i+1
current_dist = 1
while min(dtt[non_null_segs]) < 0:
#breakpoint()
# print('current_dist = ', current_dist)
# Loop through all segments
for idx in range(num_total_segs):
# breakpoint()
# print(idx, dtt[idx], mycelia['nbr_idxs'][idx], dtt[mycelia['nbr_idxs'][idx]])
#breakpoint()
# Only consider segments that have not yet been assigned (i.e dtt = -1)
# Only consider segments with a neighbor that has dtt=current_dist-1
if dtt[idx] == -1 and (current_dist-1) in dtt[mycelia['nbr_idxs'][idx]]:
dtt[idx] = current_dist
# Increase the current distance from the tip
current_dist += 1
# This should not happen
# Only triggered if a segment is missed
# if current_dist > num_total_segs:
# breakpoint()
# breakpoint()
return dtt
else:
# Initialize dist to tip as all ones
dtt = -1*np.ones((num_total_segs,1))
non_null_segs = np.where(mycelia['branch_id'][:num_total_segs] > -1)[0]
null_segs = np.where(mycelia['branch_id'][:num_total_segs] == -1)[0]
if any(i in null_segs for i in non_null_segs):
breakpoint()
# If a segment is a tip, it has a distance to tip of 0
tip_segs = np.where(mycelia['is_tip'][:num_total_segs])[0]
dtt[tip_segs] = 0
dtt[null_segs] = 1e12
# If a segment is a neighbor of a tip, it has a distance to tip (dtt) of 1
# If a segment is a neighbor of a segment with dtt of i, it has a dtt of i+1
current_dist = 1
while min(dtt[non_null_segs]) < 0:
#breakpoint()
# print('current_dist = ', current_dist)
# Loop through all segments
for idx in range(num_total_segs):
# Only consider segments that have not yet been assigned (i.e dtt = -1)
# Only consider segments with a neighbor that has dtt=current_dist-1
if dtt[idx] == -1 and (current_dist-1) in dtt[mycelia['nbr_idxs'][idx]]:
lead_dist = np.where(dtt[mycelia['nbr_idxs'][idx]]==(current_dist-1))[0]
if len(lead_dist) == 1 and (mycelia['branch_id'][idx] not in mycelia['branch_id'][mycelia['nbr_idxs'][idx][lead_dist[0]]]):
check_if_no_tip_in_branch = np.where(mycelia['branch_id'][:num_total_segs] == mycelia['branch_id'][idx])
if all(mycelia['is_tip'][check_if_no_tip_in_branch]==False):
dtt[idx] = current_dist
else:
continue
else:
dtt[idx] = current_dist
# Increase the current distance from the tip
current_dist += 1
# This should not happen
# Only triggered if a segment is missed
# if current_dist > num_total_segs:
# breakpoint()
# breakpoint()
return dtt
# # ----------------------------------------------------------------------------
def transloc(mycelia, num_total_segs, dtt, isActiveTrans, whichInitialCondition,
isConvectDependOnMetabo_cw,
isConvectDependOnMetabo_gluc,
isConvectDependOnMetabo_treha):
"""
Parameters
----------
mycelia : dictionary
Stores structural information of mycelia colony for all hyphal segments.
num_total_segs : int
Current total number of segments in the mycelium.
dtt : array
Contains the distance each segment is away from the nearest tip segment.
Returns
-------
mycelia : dictionary
Updated structural information of mycelia colony for all hyphal segments.
Purpose
-------
Calculate the change in nutrients due to translocation (diffusion of glucose,
conversion of glucose to cell wall materials, active transport of cell wall
materials)
"""
# Conversion Term: How much glucose is used by metabolism? (Actually, all of it
# so I think the update of gluc_i needs to reflect that)
use_original = 0
alpha_gluc = gf.michaelis_menten(1,
params['Kc2_gluc'],
mycelia['gluc_i'][:num_total_segs])
# Matrix of values for seg j
# This next line is not correct - the glucose values are at steady state with respect to metabolism
# mycelia['gluc_i'][:num_total_segs] = mycelia['gluc_i'][:num_total_segs] - params['dt']*convert_term
negative_gluc_i_idx = np.where(mycelia['gluc_i'][:num_total_segs] < 0)[0]
if len(negative_gluc_i_idx)>0:
print('Glucose below 0.0:',np.min(mycelia['gluc_i'][:num_total_segs]))
mycelia['gluc_i'][negative_gluc_i_idx] = np.finfo(np.float64).tiny;
#breakpoint()
gluc_curr = mycelia['gluc_i'][:num_total_segs]
#seg_volume = mycelia['seg_vol'][:num_total_segs] mycelia['seg_vol'] doesn't appear to be getting updated
seg_lengths = mycelia['seg_length'][:num_total_segs]
seg_volume = seg_lengths*params['cross_area']
gluc_curr_concentrations = gluc_curr/seg_volume
if(np.any(gluc_curr < 0)):
print('Glucose below 0.0:',np.min(gluc_curr))
breakpoint()
cw_curr = mycelia['cw_i'][:num_total_segs]
treha_curr = mycelia['treha_i'][:num_total_segs]
cw_curr_concentrations = cw_curr/seg_volume
treha_curr_concentrations = treha_curr/seg_volume
# Diffusion Term: sum_{nbr in nbrs} (D/L)*(nbr - self)
d2gluc_dx2 = np.zeros((num_total_segs,1))
d2treha_dx2 = np.zeros((num_total_segs,1))
# Glucose & cell wall concs in neighboring cells summed up
nbr_curr = mycelia['nbr_idxs'][:num_total_segs]
to_nbrs = []
from_nbrs = []
gluc_nbrs = np.zeros((num_total_segs,1))
treha_nbrs = np.zeros((num_total_segs,1))
delta_gluc_conc_nbrs = np.zeros((num_total_segs,1))
nbr_length = np.zeros((num_total_segs,1))
nbr_volume = np.zeros((num_total_segs,1))
volume_use = np.zeros((num_total_segs,1))
nbr_dist = np.zeros((num_total_segs,1))
nbr_dist_sqr = np.zeros((num_total_segs,1))
# Calculate neighbor lists
for idx in range(num_total_segs):
delta_gluc_conc_nbrs = delta_gluc_conc_nbrs*0.0
nbr_length = nbr_length*0.0
nbr_volume = nbr_volume*0.0
volume_use = volume_use*0.0
nbr_dist = nbr_dist*0.0
nbr_dist_sqr = nbr_dist_sqr*0.0
nbr_of_idx = np.array(nbr_curr[idx])
if (mycelia['bypass'][idx]==True):
to_nbrs.append([])
from_nbrs.append([])
continue
# Advection is to the closest tip. Find the immediate neighbors that are closer to tips.
# If a segment is equally close to two tips, then the advection is toward both tips.
if len(np.where(dtt[nbr_of_idx] < dtt[idx])[0]) and (mycelia['branch_id'][idx])>-1:
chosen_idx = np.array(np.where(dtt[nbr_of_idx] < dtt[idx])[0])
if len(chosen_idx)>len(dtt[nbr_of_idx]):
breakpoint()
elif len(chosen_idx) < 1:
breakpoint()
chosen_idx = list(chosen_idx)
candidate_for_deletion = chosen_idx.copy()
for i in range(len(candidate_for_deletion)):
# print(candidate_for_deletion[i])
if mycelia['branch_id'][nbr_of_idx[candidate_for_deletion[i]]]==-1:
# print('Removing : ', candidate_for_deletion[i])
if candidate_for_deletion[i] not in chosen_idx:
breakpoint()
chosen_idx.remove(candidate_for_deletion[i])
to_nbrs.append(nbr_of_idx[chosen_idx].tolist())
elif len(nbr_of_idx)<1:
to_nbrs.append([])
else:
to_nbrs.append([])
# Find the immediate neighbors that are further from tip:
if len(np.where(dtt[nbr_of_idx] > dtt[idx])[0]) and (mycelia['branch_id'][idx])>-1:
chosen_idx = np.array(np.where(dtt[nbr_of_idx] > dtt[idx])[0])
if len(chosen_idx)>len(dtt[nbr_of_idx]):
breakpoint()
elif len(chosen_idx) < 1:
breakpoint()
chosen_idx = list(chosen_idx)
candidate_for_deletion = chosen_idx.copy()
for i in range(len(candidate_for_deletion)):
# print(candidate_for_deletion[i])
if mycelia['branch_id'][nbr_of_idx[candidate_for_deletion[i]]]==-1:
# print('Removing : ', candidate_for_deletion[i])
if candidate_for_deletion[i] not in chosen_idx:
breakpoint()
chosen_idx.remove(candidate_for_deletion[i])
# If a neighbor is a tip, don't export material from tip - it goes into growth instead
if mycelia['is_tip'][nbr_of_idx[candidate_for_deletion[i]]]==True:
# print('Removing : ', candidate_for_deletion[i])
if candidate_for_deletion[i] not in chosen_idx:
breakpoint()
chosen_idx.remove(candidate_for_deletion[i])
from_nbrs.append(nbr_of_idx[chosen_idx].tolist())
elif len(nbr_of_idx)<1:
from_nbrs.append([])
else:
from_nbrs.append([])
# This is the total count of gluc_i in neighbors of idx, not concentrations!
gluc_nbrs[idx] = np.sum(mycelia['gluc_i'][nbr_curr[idx]])
treha_nbrs[idx] = np.sum(mycelia['treha_i'][nbr_curr[idx]])
delta_gluc_conc_nbrs = gluc_curr_concentrations[nbr_curr[idx]] - gluc_curr_concentrations[idx]
delta_treha_conc_nbrs = treha_curr_concentrations[nbr_curr[idx]] - treha_curr_concentrations[idx]
nbr_length = seg_lengths[nbr_curr[idx]]
nbr_volume = seg_volume[nbr_curr[idx]]
volume_use_gluc = np.zeros((len(nbr_curr[idx]),1))
# Determine whether to remove material from the neighbor or from the current segment:
volume_use_gluc[(delta_gluc_conc_nbrs > 0)] = nbr_volume[(delta_gluc_conc_nbrs > 0)]
volume_use_gluc[(delta_gluc_conc_nbrs <= 0)] = seg_volume[idx]
# Count of the Number of Neighbors (cnn) that neighbors of idx have:
nn = np.zeros((len(nbr_curr[idx]),1))
cnn = [len(nbr_curr[i]) for i in nbr_of_idx]
nn[(delta_gluc_conc_nbrs > 0)] = cnn[(delta_gluc_conc_nbrs > 0)]
nn[(delta_gluc_conc_nbrs <= 0)] = len(nbr_of_idx)
# The amount taken from a cell must be split amoung its neighbors, so
# that the amount taken doesn't exceed the total available.
# Likewise the amount added to a cell is only a fraction of what is transported out of the neighbor
degeneracy_gluc = 1/nn
volume_use_treha = np.zeros((len(nbr_curr[idx]),1))
volume_use_treha[(delta_treha_conc_nbrs > 0)] = nbr_volume[(delta_treha_conc_nbrs > 0)]
volume_use_treha[(delta_treha_conc_nbrs <= 0)] = seg_volume[idx]
# The distance of transport is assumed to be half the segment length of the current segment
# and half of the previous segment.
nbr_dist = 0.5*(nbr_length+seg_lengths[idx])
nbr_dist_sqr = nbr_dist*nbr_dist
# d2gluc_dx2[idx] = np.sum(delta_gluc_conc_nbrs/nbr_dist_sqr) would be the total change in concentration
# due to diffusion. But we need to know what the change in counts are. So multiply the change in concentration
# due to each neighbor by the volume of the compartment that is losing concentration.
d2gluc_dx2[idx] = np.sum(degeneracy_gluc*delta_gluc_conc_nbrs/nbr_dist_sqr*volume_use_gluc)
d2treha_dx2[idx] = np.sum(delta_treha_conc_nbrs/nbr_dist_sqr*volume_use_treha)
to_nbrs = np.array(to_nbrs)
# len_to_neighbors = Number of neighbors including self:
len_to_nbrs = np.array([len(to_nbrs[i]) for i in range(len(to_nbrs))]).reshape(-1,1)
gluc_diff_term = params['diffusion_i_gluc']*d2gluc_dx2
treha_diff_term = params['diffusion_i_gluc']*d2treha_dx2
# Count tips that potentially fail the CFL condition.
x = np.where(0.1*seg_lengths*seg_lengths < params['dt']*params['diffusion_i_gluc'])[0]
print("Number segements failing CFL condition: diffusion set to 0:", len(x), num_total_segs)
# Update due to diffusion:
mycelia_before = mycelia['gluc_i'][:num_total_segs].copy()
mycelia['gluc_i'][:num_total_segs] += params['dt_i']*gluc_diff_term
mycelia['treha_i'][:num_total_segs] += params['dt_i']*treha_diff_term
negative_gluc_i_idx = np.where(mycelia['gluc_i'][:num_total_segs] < 0)[0]
if len(negative_gluc_i_idx)>0:
print('Glucose before diffusion_term :',mycelia_before[negative_gluc_i_idx])
print('Glucose below 0.0 after diffusion_term :',mycelia['gluc_i'][negative_gluc_i_idx])
print('diffusion_term',gluc_diff_term[negative_gluc_i_idx])
print('Indices:',negative_gluc_i_idx)
print('Segment lengths:',mycelia['seg_length'][negative_gluc_i_idx])
mycelia['gluc_i'][negative_gluc_i_idx] = np.finfo(np.float64).tiny;
#breakpoint()
negative_treha_i_idx = np.where(mycelia['treha_i'][:num_total_segs] < 0)[0]
mycelia_before = mycelia['treha_i'][:num_total_segs].copy()
if len(negative_treha_i_idx)>0:
print('Trehalose before diffusion_term :',mycelia_before[negative_treha_i_idx])
print('Trehalose below 0.0 after diffusion_term :',mycelia['treha_i'][negative_treha_i_idx])
print('diffusion_term',gluc_diff_term[negative_treha_i_idx])
mycelia['treha_i'][negative_treha_i_idx] = np.finfo(np.float64).tiny;
breakpoint()
print('Min, Max glucose coounts:',np.min(gluc_curr), np.max(gluc_curr))
print('Sum net trehalose diffusion',np.sum(treha_diff_term[:num_total_segs]))
print('Sum net glucose diffusion',np.sum(gluc_diff_term[:num_total_segs]))
print('Mean glucose diffusion',np.mean(np.abs(gluc_diff_term[:num_total_segs])))
print('Max glucose diffusion',np.max(gluc_diff_term[:num_total_segs]))
if(num_total_segs == 16):
x = 1
if(num_total_segs == 12):
x = 1
if(num_total_segs == 8):
x = 1
# Metabolism:
# Update concentrations due to metabolic activity:
alpha_gluc = gf.michaelis_menten(1,
params['Kc2_gluc'],
mycelia['gluc_i'][:num_total_segs])
convert_term = params['kc1_gluc']*alpha_gluc
if (np.isnan(np.sum(convert_term))):
breakpoint()
#convert_term[np.where(mycelia['is_tip'])] = 0 #Why do this? Why can't the tip have metabolism?
if (np.any(mycelia['gluc_i'][:num_total_segs] - params['dt_i']*convert_term < 0)):
bad_idx = np.where((mycelia['gluc_i'][:num_total_segs] - params['dt_i']*convert_term) < 0)
print(bad_idx)
print('Glucose before conversion:',mycelia['gluc_i'][bad_idx])
print('Amount converted:',convert_term[bad_idx]*params['dt_i'])
print('Convert rate:',convert_term[bad_idx])
breakpoint()
mycelia_before = mycelia['gluc_i'][:num_total_segs].copy()
# Here glucose is converted to other metabolites:
mycelia['gluc_i'][:num_total_segs] -= params['dt_i']*convert_term
mycelia['cw_i'][:num_total_segs] += params['dt_i']*(params['yield_c_in_mmoles']*convert_term)
#mycelia['treha_i'][:num_total_segs] += params['dt']*(convert_term*0.3*0.1)
mycelia['treha_i'][:num_total_segs] += params['dt_i']*(convert_term*0.1)
negative_cw_i_idx = np.where(mycelia['cw_i'][:num_total_segs] < 0)[0]
negative_treha_i_idx = np.where(mycelia['treha_i'][:num_total_segs] < 0)[0]
negative_gluc_i_idx = np.where(mycelia['gluc_i'][:num_total_segs] < 0)[0]
if len(negative_gluc_i_idx)>0:
print('Glucose before convert_term :',mycelia_before[negative_gluc_i_idx])
print('Glucose below 0.0 after convert_term :',mycelia['gluc_i'][negative_gluc_i_idx])
print(mycelia['is_tip'][negative_gluc_i_idx])
#if (np.min(mycelia['gluc_i'][:num_total_segs]) < 0.0):
breakpoint()
mycelia['gluc_i'][negative_gluc_i_idx] = np.finfo(np.float64).tiny;
if len(negative_cw_i_idx)>0:
mycelia['cw_i'][negative_cw_i_idx] = np.finfo(np.float64).tiny;
if len(negative_treha_i_idx)>0:
mycelia['treha_i'][negative_treha_i_idx] = np.finfo(np.float64).tiny;
if len(negative_gluc_i_idx)>0:
mycelia['gluc_i'][negative_gluc_i_idx] = np.finfo(np.float64).tiny;
#print('Metabolism - gluc_curr:',mycelia['gluc_i'][:num_total_segs])
# Advection:
# Get current counts/concentrations after diffusion:
gluc_curr = mycelia['gluc_i'][:num_total_segs]
gluc_curr_concentrations = gluc_curr/seg_volume
cw_curr = mycelia['cw_i'][:num_total_segs]
treha_curr = mycelia['treha_i'][:num_total_segs]
cw_curr_concentrations = cw_curr/seg_volume
treha_curr_concentrations = treha_curr/seg_volume
# The concentration imported from neighboring segments is scaled by the number of neighbors that the neighboring
# segment must export to. For a linear hyphae, a middle segment must export to two neighbors. For a segment that is
# one leg of an X, there are three neighbors. for a segment in the middle of a Y_ structure, there are likewise three - two at the top of the Y and
# one at the bottom
cw_curr_mod = cw_curr_concentrations #This is the amount of cell wall material already present (before metabolism made more)
#in the hyphal compartment
#that can also be transported out of the compartment.
treha_curr_mod = treha_curr_concentrations
gluc_curr_mod = gluc_curr_concentrations
# Don't export from tip
cw_curr_mod[np.where(mycelia['is_tip'][:num_total_segs])[0]] = 0
cw_delta_count = np.zeros((num_total_segs,1))
gluc_delta_count = np.zeros((num_total_segs,1))
treha_delta_count = np.zeros((num_total_segs,1))
# Rate/velocity of active transport. The units here are concentraton/sec
advection_vel_cw = params['advection_vel_cw']
advection_vel_gluc = advection_vel_cw*params['yield_c']
K_cw = advection_vel_cw*params['dt_i']
alpha_cw = gf.michaelis_menten(1, K_cw,
mycelia['cw_i'][:num_total_segs])
cw_convect_term = np.zeros((num_total_segs,1))
gluc_convect_term = np.zeros((num_total_segs,1))
treha_convect_term = np.zeros((num_total_segs,1))
for idx in range(num_total_segs):
if mycelia['branch_id'][idx] == -1:
continue
if idx >= len(from_nbrs):
breakpoint()
from_nbrs_idx = from_nbrs[idx]
to_nbrs_idx = to_nbrs[idx]
from_nbr_volume = seg_volume[from_nbrs_idx]
cw_from_scaled_nbrs = np.zeros((len(from_nbrs_idx),1))
treha_from_scaled_nbrs = np.zeros((len(from_nbrs_idx),1))
gluc_from_scaled_nbrs = np.zeros((len(from_nbrs_idx),1))
if (len(from_nbrs_idx) + len(to_nbrs_idx) >0):
if np.isnan(sum(seg_lengths[from_nbrs_idx])):
breakpoint()
# The amount of cell wall material transported is the product of the cell wall concentration in the vessicle and
# the velocity of translocation the vessicle (determined by metabolism)
# divided by the distance it must be transported (seg_length). Rather than divided the velocity of
# transport of the vessicle by the length (vel_wall/seg_length), it is more convenient to divide the
# concentration in the vessicle by the length.
# Also, a neigbor may export to many hyphae, so need to divide its contributino by the number of
# neighbors that it exports to = len_to_nbrs_idx.
# cw_from_scaled[idx] = sum(cw_curr[from_nbrs_idx]/(seg_lengths[from_nbrs_idx]*len_to_nbrs[from_nbrs_idx]))
# A hyphae may have many neighbors from which material is imported, such as in the initial x-structure, so take the sum
# over all of these neighbors.
cw_from_scaled_nbrs = cw_curr_concentrations[from_nbrs_idx]/len_to_nbrs[from_nbrs_idx]
treha_from_scaled_nbrs = treha_curr_concentrations[from_nbrs_idx]/len_to_nbrs[from_nbrs_idx]
gluc_from_scaled_nbrs = gluc_curr_concentrations[from_nbrs_idx]/len_to_nbrs[from_nbrs_idx]
volume_use_cw = np.zeros((len(from_nbrs_idx),1))
# This is an array of differences in concentration
cw_conc_diff = cw_from_scaled_nbrs - cw_curr_mod[idx]
treha_conc_diff = treha_from_scaled_nbrs - treha_curr_mod[idx]
gluc_conc_diff = gluc_from_scaled_nbrs - gluc_curr_mod[idx]
# Get segment volumes for conversion of concentration to counts:
exprt = (cw_conc_diff < 0)
imprt = (cw_conc_diff >= 0)
volume_use_cw[(cw_conc_diff < 0)] = seg_volume[idx]
volume_use_cw[(cw_conc_diff >= 0)] = from_nbr_volume[(cw_conc_diff > 0)]
# Change to counts taking from teh correct segment volume
cw_delta_count[idx] = np.sum(cw_from_scaled_nbrs*from_nbr_volume) - cw_curr_mod[idx]*seg_volume[idx]
exprt_amt = (len(to_nbrs[idx]) > 0) * 1.0
# Advection without taking into account metabolism due to glucose
cw_convect_term[idx] = advection_vel_cw* \
(np.sum(1/len_to_nbrs[from_nbrs_idx]*alpha_cw[from_nbrs_idx])-exprt_amt*alpha_cw[idx])
# Advection taking into account metabolism due to glucose
#cw_convect_term[idx] = advection_vel_cw* \
# (np.sum(1/len_to_nbrs[from_nbrs_idx]*alpha_cw[from_nbrs_idx]*alpha_gluc[from_nbrs_idx])-exprt_amt*alpha_cw[idx]*alpha_gluc[idx])
if np.isnan(cw_delta_count[idx]):
breakpoint()
if (np.isnan(np.sum(cw_convect_term))):
breakpoint()
if (np.isnan(np.sum(treha_convect_term))):
breakpoint()
if (np.isnan(np.sum(gluc_convect_term))):
breakpoint()
print('Mean glucose advection',np.mean(np.abs(gluc_convect_term[:num_total_segs])))
print('Net glucose advection',np.sum(gluc_convect_term[:num_total_segs]))
print('Net cell wl diff',np.sum(cw_delta_count[:num_total_segs]))
print('Net cell wl advection',np.sum(cw_convect_term[:num_total_segs]))
print('Mean cell wl difference',np.mean(np.abs(cw_delta_count[:num_total_segs])))
print('Mean cell wl advection',np.mean(np.abs(cw_convect_term[:num_total_segs])))
print('Max cell wl advection',np.max(cw_convect_term[:num_total_segs]))
print('Max segment length',np.max(mycelia['seg_length']))
if (np.abs(np.sum(cw_convect_term[:num_total_segs])) > 1.0e-28):
print('Net Convection of CW greater than zero')
# Update concentrations due to convection
if (np.any(mycelia['cw_i'][:num_total_segs] + params['dt_i']*cw_convect_term < 0)):
bad_idx = np.where((mycelia['cw_i'][:num_total_segs] + params['dt_i']*cw_convect_term[:num_total_segs]) < 0)
print('Bad indices: ',bad_idx)
print('Cell Wall before conversion:',mycelia['cw_i'][bad_idx])
print('Amount converted:',cw_convect_term[bad_idx]*params['dt_i'])
print('Convert rate:',cw_convect_term[bad_idx])
print('Cell Wall after conversion:',mycelia['cw_i'][bad_idx] + params['dt_i']*(cw_convect_term[bad_idx]))
#breakpoint()
mycelia['cw_i'][:num_total_segs] += params['dt_i']*(cw_convect_term)
negative_cw_i_idx = np.where(mycelia['cw_i'][:num_total_segs] < 0)[0]
if len(negative_cw_i_idx)>0:
mycelia['cw_i'][negative_cw_i_idx] = np.finfo(np.float64).tiny;
if len(negative_treha_i_idx)>0:
mycelia['treha_i'][negative_treha_i_idx] = np.finfo(np.float64).tiny;
if len(negative_gluc_i_idx)>0:
mycelia['gluc_i'][negative_gluc_i_idx] = np.finfo(np.float64).tiny;
# breakpoint()
if(np.any(mycelia['gluc_i'][:num_total_segs] < 0)):
breakpoint()
#print('Advection - gluc_curr:',mycelia['gluc_i'][:num_total_segs])
return mycelia
# ----------------------------------------------------------------------------
# UPTAKE FUNCTIONS
# ----------------------------------------------------------------------------
def uptake(sub_e_gluc, mycelia, num_total_segs):
"""
Parameters
----------
sub_e_gluc : array (2D)
The 2D grid storing values of glucose in the external domain.
mycelia : dictionary
Stores structural information of mycelia colony for all hyphal segments.
num_total_segs : int
Current total number of segments in the mycelium.
Returns
-------
mycelia : dictionary
Updated structural information of mycelia colony for all hyphal segments.
"""
# All indicies of external grid used
xy_e_idx_og = mycelia['xy_e_idx'][:num_total_segs, :].astype(int)
# breakpoint()
# Reformat indicies
xy_e_idx = tuple(np.transpose(xy_e_idx_og))
# Glucose mmole values at grid points, not mMolar!
gluc_e = sub_e_gluc[xy_e_idx].copy()
# Glucose inside the hyphae
gluc_i = mycelia['gluc_i'][:num_total_segs].flatten()
#if(np.any(gluc_i < 1.0e-16)):
# breakpoint()
# Amount in mmol taken up by each segment -RATE IS NOT CONCENTRATION/sec
# gluc_uptake = params['dt']*gluc_e*gf.michaelis_menten(params['ku1_gluc'],
# params['Ku2_gluc'],
# gluc_i)
# Ku2_gluc units are concentration in mmole/(micron)^ in parameters.ini
# but are changed to units of mmole in helper_functions.get_configs()
# Since a hyphae is considered to live at a single grid point, the uptake
# of glucose in the hyphae is from the grid at which the center of the hyphae
#gluc_uptake = params['dt']*gf.michaelis_menten(params['ku1_gluc'],
# params['Ku2_gluc'],
# gluc_e)
# Could use a different rate of uptake depending on the hyphal size,
# but I have not seen anyone indicate that the uptake rate is a function of cell/hyphae size.
# But this is probably the case
relative_seg_vol = mycelia['seg_vol'][:num_total_segs].flatten()/params['init_vol_seg']
#if any(relative_seg_vol == 0):
# breakpoint()
gluc_uptake = params['dt_e']*gf.michaelis_menten(params['ku1_gluc'],
params['Ku2_gluc']/relative_seg_vol,
gluc_e)
#gluc_uptake[np.where(relative_seg_vol <1e-15)] = 0
seg_lengths = mycelia['seg_length'][:num_total_segs]
gluc_uptake[np.where(seg_lengths*seg_lengths < 0.1*params['diffusion_i_gluc'])[0]] = 0.0
# gluc_uptake[np.where(seg_lengths*seg_lengths < 0.1*params['diffusion_i_gluc'])[0]] = 0.1*gluc_uptake[np.where(seg_lengths*seg_lengths < 0.1*params['diffusion_i_gluc'])[0]]
for i in range(num_total_segs):
if mycelia['branch_id'][i] < 0:
gluc_uptake[i] = 0.0
# List of a list containing segment IDs, if inner list length > 1, the IDs in same grid cell
my_share = mycelia['share_e'][:num_total_segs]
# Original amount taken up in each grid cell
gluc_up_sum = np.array([np.sum(gluc_uptake[i]) for i in my_share])
# breakpoint()
if np.min(gluc_e - gluc_up_sum) >= 0:
#breakpoint()
# Update the amount of glucose in external grid cells
sub_e_gluc[xy_e_idx] = gluc_e - gluc_up_sum
# Update the amount of glucose in mmoles in internal segments
mycelia['gluc_i'][:num_total_segs] += params['yield_u']*gluc_uptake.reshape(-1,1)
# breakpoint()
else:
#breakpoint()
# Find the cells where too much is taken up
raw_difference = gluc_e - gluc_up_sum
raw_difference_neg_idx = np.where(raw_difference < 0)
raw_difference_pos_idx = np.where(raw_difference >=0)
sub_e_gluc[xy_e_idx] = gluc_e - gluc_up_sum
sub_e_gluc[xy_e_idx[0][raw_difference_neg_idx], xy_e_idx[1][raw_difference_neg_idx]] = 0.0
mycelia['gluc_i'][:num_total_segs] += params['yield_u']*gluc_uptake.reshape(-1,1)
# Modify gluc_uptake & gluc_up_sum
#breakpoint()
# breakpoint()
return mycelia
def release(sub_e_treha, mycelia, num_total_segs, isTipRelease):
"""
Parameters
----------
sub_e_gluc : array (2D)
The 2D grid storing values of glucose in the external domain.
mycelia : dictionary
Stores structural information of mycelia colony for all hyphal segments.
num_total_segs : int
Current total number of segments in the mycelium.
Returns
-------
mycelia : dictionary
Updated structural information of mycelia colony for all hyphal segments.
"""
tip_release = isTipRelease#1
# All indicies of external grid used
xy_e_idx_og = mycelia['xy_e_idx'][:num_total_segs, :].astype(int)
# breakpoint()
# Reformat indicies
xy_e_idx = tuple(np.transpose(xy_e_idx_og))
# Trehalose mmole values at grid points
treha_e = sub_e_treha[xy_e_idx].copy()
# Trehalose inside the hyphae
treha_i = mycelia['treha_i'][:num_total_segs].flatten()
# if (np.max(treha_i)>1e1):
# breakpoint()
relative_seg_vol = mycelia['seg_vol'][:num_total_segs].flatten()/params['init_vol_seg']
#treha_release = gf.michaelis_menten(params['kc1_gluc'],
# params['Kc2_gluc'],
# treha_i)*params['dt']
#treha_release = (treha_i/mycelia['seg_vol']) / (1.0e-18 + treha_e/params['vol_grid'] )
treha_release = (treha_i/mycelia['seg_vol'][:num_total_segs][0] - treha_e/params['vol_grid'] )/2
seg_lengths = mycelia['seg_length'][:num_total_segs]
treha_release[np.where(seg_lengths*seg_lengths < 0.1*params['diffusion_i_gluc'])[0]] = 0.0
# treha_release[np.where(seg_lengths*seg_lengths < 0.1*params['diffusion_i_gluc'])[0]] = 0.1*treha_release[np.where(seg_lengths*seg_lengths < 0.1*params['diffusion_i_gluc'])[0]]
# treha_release = treha_i*0.1
if tip_release == 0:
negative_branch_ids = np.where(mycelia['branch_id'][:num_total_segs]<0)[0]
else:
negative_branch_ids = np.where(mycelia['branch_id'][:num_total_segs]<0)[0]
nontip_ids = np.where(mycelia['is_tip'][:num_total_segs]==False)[0]
treha_release[negative_branch_ids] = 0.0
if tip_release == 1:
treha_release[nontip_ids] = 0.0
# for i in range(num_total_segs):
# if mycelia['branch_id'][i] < 0:
# treha_release[i] = 0.0
sub_e_treha[xy_e_idx] = sub_e_treha[xy_e_idx]+treha_release
# breakpoint()
mycelia['treha_i'][:num_total_segs] = mycelia['treha_i'][:num_total_segs] - (treha_release).reshape(-1,1)
# if (np.max(mycelia['treha_i'][:num_total_segs])>1e1):
# breakpoint()
return mycelia