-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathcosin_add_m_layer.cu
99 lines (80 loc) · 3.58 KB
/
cosin_add_m_layer.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#include <algorithm>
#include <vector>
#include <cmath>
#include "caffe/layers/cosin_add_m_layer.hpp"
namespace caffe {
template <typename Dtype>
__global__ void CosinAddmForward(const int n, const int dim, const Dtype* label,
Dtype* top_data, Dtype threshold, Dtype bais, Dtype* flag) {
CUDA_KERNEL_LOOP(index, n) {
int gt = static_cast<int>(label[index]);
if(top_data[index * dim + gt] < 1.0f) {
Dtype theta = acos(top_data[index * dim + gt]);
if (top_data[index * dim + gt] > threshold) {
top_data[index * dim + gt] = cos(theta + bais);
}
else
{
top_data[index * dim + gt] = top_data[index * dim + gt] - bais * sin(bais);
flag[index * dim + gt] = 1.0f;
}
}
}
}
template <typename Dtype>
__global__ void CosinAddmBackward(const int n, const int dim, const Dtype* label,
Dtype* bottom_diff, const Dtype* cos_data, Dtype bais, const Dtype* flag) {
CUDA_KERNEL_LOOP(index, n) {
int gt = static_cast<int>(label[index]);
if(flag[index * dim + gt] == 0.0f) {
Dtype cos_theta = cos_data[index * dim + gt];
Dtype sin_theta = sqrt(1 - pow(cos_theta,2));
bottom_diff[index * dim + gt] = bottom_diff[index * dim + gt] *(cos(bais) + sin(bais) * cos_theta / sin_theta);
}
}
}
template <typename Dtype>
void CosinAddmLayer<Dtype>::Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
const Dtype* bottom_data = bottom[0]->gpu_data();
const Dtype* label_data = bottom[1]->gpu_data();
Dtype* top_data = top[0]->mutable_gpu_data();
Dtype* tpflag = top_flag.mutable_gpu_data();
Dtype* cos_t = cos_theta.mutable_gpu_data();
int num = bottom[0]->num();
int count = bottom[0]->count();
int dim = count / num;
if (top[0] != bottom[0]) caffe_copy(count, bottom_data, top_data);
if (!transform_test_ && this->phase_ == TEST) return;
caffe_copy(count, bottom_data, top_data);
caffe_copy(count, bottom_data, cos_t);
caffe_gpu_set(count, Dtype(0), tpflag);
// NOLINT_NEXT_LINE(whitespace/operators)
CosinAddmForward<Dtype> << <CAFFE_GET_BLOCKS(num), CAFFE_CUDA_NUM_THREADS >> > (
num, dim, label_data, top_data, threshold, m_, tpflag);
CUDA_POST_KERNEL_CHECK;
const Dtype* cos_test = cos_theta.cpu_data();
const Dtype* tpflag_test = top_flag.cpu_data();
const Dtype* top_data_test = top[0]->cpu_data();
}
template <typename Dtype>
void CosinAddmLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
if (top[0] != bottom[0] && propagate_down[0]) {
int num = bottom[0]->num();
int count = bottom[0]->count();
int dim = count / num;
const Dtype* top_diff = top[0]->gpu_diff();
const Dtype* label_data = bottom[1]->gpu_data();
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff();
caffe_copy(count, top_diff, bottom_diff);
const Dtype* tpflag = top_flag.gpu_data();
const Dtype* cos_t = cos_theta.gpu_data();
CosinAddmBackward<Dtype> << <CAFFE_GET_BLOCKS(num), CAFFE_CUDA_NUM_THREADS >> > (
num, dim, label_data, bottom_diff, cos_t, m_, tpflag);
CUDA_POST_KERNEL_CHECK;
}
}
INSTANTIATE_LAYER_GPU_FUNCS(CosinAddmLayer);
} // namespace caffe