forked from baumgach/vagan-code
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier_test_saliencies.py
81 lines (54 loc) · 2.55 KB
/
classifier_test_saliencies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Code for displaying saliency maps for a trained classifier (but not VA-GAN)
# Authors:
# Christian F. Baumgartner ([email protected])
import numpy as np
import os
import glob
from importlib.machinery import SourceFileLoader
import argparse
from sklearn.metrics import f1_score, classification_report, confusion_matrix
import config.system as sys_config
from classifier.model_classifier import classifier
import logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(message)s')
import matplotlib.pyplot as plt
def main(model_path, exp_config):
# Get Data
if exp_config.data_identifier == 'synthetic':
from data.synthetic_data import synthetic_data as data_loader
elif exp_config.data_identifier == 'adni':
from data.adni_data import adni_data as data_loader
else:
raise ValueError('Unknown data identifier: %s' % exp_config.data_identifier)
data = data_loader(exp_config)
# Make and restore vagan model
classifier_model = classifier(exp_config=exp_config, data=data, fixed_batch_size=1)
# classifier_model.initialise_saliency(mode='additive_pertubation')
# classifier_model.initialise_saliency(mode='backprop')
# classifier_model.initialise_saliency(mode='integrated_gradients')
classifier_model.initialise_saliency(mode='guided_backprop')
# classifier_model.initialise_saliency(mode='CAM') # Requires CAM net (obvs)
classifier_model.load_weights(model_path, type='best_xent')
for batch in data.testAD.iterate_batches(1):
x, y = batch
sal = classifier_model.compute_saliency(x, label=1)
plt.figure()
plt.imshow(np.squeeze(x))
plt.figure()
plt.imshow(np.squeeze(sal))
plt.show()
if __name__ == '__main__':
base_path = sys_config.project_root
# Code for selecting experiment from command line
# parser = argparse.ArgumentParser(
# description="Script for a simple test loop evaluating a network on the test dataset")
# parser.add_argument("EXP_PATH", type=str, help="Path to experiment folder (assuming you are in the working directory)")
# args = parser.parse_args()
# exp_path = args.EXP_PATH
# Code for hard coding experiment into script
exp_path = 'logdir/classifier/synth_normalnet'
model_path = os.path.join(base_path, exp_path)
config_file = glob.glob(model_path + '/*py')[0]
config_module = config_file.split('/')[-1].rstrip('.py')
exp_config = SourceFileLoader(config_module, os.path.join(config_file)).load_module()
main(model_path, exp_config=exp_config)