-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_single_feat.py
117 lines (86 loc) · 4.23 KB
/
train_single_feat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import tensorflow as tf
import datetime as dt
from src.network_single_feat import HierarchicalGCNN as HierGCNN
from src.helper import dataloader_single_feat as dataloader
def train_step(x, y):
with tf.GradientTape() as tape:
logits = model(x, training=True)
loss_value = loss_fn(y, logits)
grads = tape.gradient(loss_value, model.trainable_variables)
grads = [tf.clip_by_norm(g, 1.0) for g in grads]
optimizer.apply_gradients(zip(grads, model.trainable_variables))
train_loss_metric.update_state(loss_value)
train_acc_metric.update_state(y, logits)
def val_step(x, y):
val_logits = model(x, training=False)
loss_value = loss_fn(y, val_logits)
val_loss_metric.update_state(loss_value)
val_acc_metric.update_state(y, val_logits)
if __name__ == '__main__':
import time
num_classes = 24
units = 512
num_epochs = 100
learning_rate = 1e-2
dropout_rate = 0.3
train_set_path = "data/single_feature/train_batch.h5"
val_set_path = "data/single_feature/val_batch.h5"
decay_rate = learning_rate / num_epochs
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(learning_rate,
decay_steps=100000, decay_rate=decay_rate)
save_name = f'lvl_7_adj_single_units_{units}_date_{dt.datetime.now().strftime("%Y-%m-%d")}'
model = HierGCNN(units=units, rate=dropout_rate, num_classes=num_classes)
loss_fn = tf.keras.losses.CategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
summary_writer = tf.summary.create_file_writer(f'./log/{save_name}')
train_loss_metric = tf.keras.metrics.Mean()
train_acc_metric = tf.keras.metrics.CategoricalAccuracy()
val_loss_metric = tf.keras.metrics.Mean()
val_acc_metric = tf.keras.metrics.CategoricalAccuracy()
min_val_loss = 0.0
min_train_loss = 0.0
max_train_acc = 0.0
max_val_acc = 0.0
max_epoch = 0
for epoch in tf.range(num_epochs):
print(f"Epoch {epoch + 1} of {num_epochs}")
start_time = time.time()
train_dataloader = dataloader(train_set_path)
val_dataloader = dataloader(val_set_path)
with summary_writer.as_default():
for step, (x_batch_train, y_batch_train) in enumerate(train_dataloader):
one_hot_y = tf.one_hot(y_batch_train, depth=num_classes, axis=-1)
train_step(x_batch_train, one_hot_y)
# Log every 100 batches.
if step % 100 == 0:
print(
"Training loss (for one batch) at step %d: %.4f"
% (step, float(train_loss_metric.result()))
)
train_loss = train_loss_metric.result()
train_acc = train_acc_metric.result()
tf.summary.scalar('train_loss', train_loss, step=optimizer.iterations)
tf.summary.scalar('train_acc', train_acc, step=optimizer.iterations)
train_loss_metric.reset_states()
train_acc_metric.reset_states()
print(f"Train loss={train_loss}, Train acc={train_acc}")
for x_batch_val, y_batch_val in val_dataloader:
one_hot_y = tf.one_hot(y_batch_val, depth=num_classes)
val_step(x_batch_val, one_hot_y)
val_loss = val_loss_metric.result()
val_acc = val_acc_metric.result()
if val_acc > max_val_acc:
min_val_loss = float(val_loss)
min_train_loss = float(train_loss)
max_train_acc = float(train_acc)
max_val_acc = float(val_acc)
model.save_weights(f"checkpoint/{save_name}.ckpt")
max_epoch = epoch
tf.summary.scalar('val_loss', val_loss, step=optimizer.iterations)
tf.summary.scalar('val_acc', val_acc, step=optimizer.iterations)
val_loss_metric.reset_states()
val_acc_metric.reset_states()
print(f"Val loss={val_loss}, Val acc={val_acc}")
print("Time taken: %.2fs" % (time.time() - start_time))
print(f"Epoch={max_epoch + 1}, Max train acc={max_train_acc}, Max val acc={max_val_acc}")
print(f"Train loss={min_train_loss}, Val loss={min_val_loss}")