forked from LinkSoul-AI/LLaSM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllasm.py
298 lines (245 loc) · 13.6 KB
/
llasm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoModelForCausalLM, \
LlamaConfig, LlamaModel, LlamaForCausalLM
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers import (
WhisperProcessor,
WhisperModel,
)
DEFAULT_AUDIO_PATCH_TOKEN = "<au_patch>"
DEFAULT_AUDIO_START_TOKEN = "<au_start>"
DEFAULT_AUDIO_END_TOKEN = "<au_end>"
class LlaaaConfig(LlamaConfig):
model_type = "llaaa"
def load_whisper(audio_tower_name):
model = WhisperModel.from_pretrained(audio_tower_name)
model.config.forced_decoder_ids = None
return model
class LlaaaLlamaModel(LlamaModel):
config_class = LlaaaConfig
def __init__(self, config: LlamaConfig):
super(LlaaaLlamaModel, self).__init__(config)
if hasattr(config, "mm_audio_tower"):
# HACK: for FSDP
self.audio_tower = [load_whisper(config.mm_audio_tower)]
if hasattr(config, "use_mm_proj"):
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
def initialize_audio_modules(self, audio_tower, audio_token_len, pretrain_mm_mlp_adapter=None):
self.config.mm_audio_tower = audio_tower
processor = WhisperProcessor.from_pretrained(audio_tower)
if not hasattr(self, 'audio_tower'):
audio_tower = load_whisper(audio_tower)
else:
audio_tower = self.audio_tower[0]
audio_tower.requires_grad_(False)
audio_tower = audio_tower.to(torch.float16)
self.audio_tower = [audio_tower]
self.config.use_mm_proj = True
self.config.mm_hidden_size = 1280
self.config.audio_token_len = audio_token_len
if not hasattr(self, 'mm_projector'):
self.mm_projector = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
return dict(
processor=processor,
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
audios: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
# HACK: replace back original embeddings for LLaAA pretraining
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
audio_tower = getattr(self, 'audio_tower', None)
if audio_tower is not None and (input_ids.shape[1] != 1 or self.training) and audios is not None:
audio_tower = audio_tower[0] # HACK: for FSDP
with torch.no_grad():
bs_audio_features = []
for audios_list in audios:
if len(audios_list) == 0:
dummy_audio_feature = torch.zeros(self.config.audio_token_len, self.config.mm_hidden_size, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
audio_features = [dummy_audio_feature]
else:
audio_features = []
for audio in audios_list:
decoder_input_ids = torch.ones((1, self.config.audio_token_len)) * audio_tower.config.decoder_start_token_id
decoder_input_ids = decoder_input_ids.to(audio.device).to(torch.long)
audio_feature = audio_tower(audio, decoder_input_ids=decoder_input_ids).last_hidden_state
audio_features.append(audio_feature)
bs_audio_features.append(audio_features)
audio_config = audio_tower.config
new_input_embeds = []
for cur_input_ids, cur_input_embeds, cur_audio_features in zip(input_ids, inputs_embeds, bs_audio_features):
if (cur_input_ids == audio_config.audio_patch_token).sum() == 0:
# multimodal LLM, but the current sample is not multimodal, for using both language and audio data
dummy_audio_features = self.mm_projector(cur_audio_features[0])
cur_input_embeds = cur_input_embeds + (0. * dummy_audio_features).sum()
new_input_embeds.append(cur_input_embeds)
continue
if (cur_input_ids == audio_config.audio_start_token).sum() != (cur_input_ids == audio_config.audio_end_token).sum():
raise ValueError("The number of audio start tokens and audio end tokens should be the same.")
audio_start_tokens = torch.where(cur_input_ids == audio_config.audio_start_token)[0]
if len(audio_start_tokens) != len(cur_audio_features):
raise ValueError(f"The number of audio start tokens ({len(audio_start_tokens)}) and audio features ({len(cur_audio_features)}) should be the same.")
for audio_start_token_pos, cur_audio_feature in zip(audio_start_tokens, cur_audio_features):
cur_audio_feature = self.mm_projector(cur_audio_feature)[0]
cur_audio_feature = cur_audio_feature.to(device=cur_input_embeds.device)
num_patches = cur_audio_feature.shape[0]
if cur_input_ids[audio_start_token_pos + num_patches + 1] != audio_config.audio_end_token:
raise ValueError("The audio end token should follow the audio start token.")
if orig_embeds_params is not None:
cur_new_input_embeds = torch.cat(
(cur_input_embeds[:audio_start_token_pos].detach(),
cur_input_embeds[audio_start_token_pos:audio_start_token_pos+1],
cur_audio_feature,
cur_input_embeds[audio_start_token_pos + num_patches + 1:audio_start_token_pos + num_patches + 2],
cur_input_embeds[audio_start_token_pos + num_patches + 2:].detach()), dim=0)
else:
cur_new_input_embeds = torch.cat((
cur_input_embeds[:audio_start_token_pos+1],
cur_audio_feature,
cur_input_embeds[audio_start_token_pos + num_patches + 1:]), dim=0)
new_input_embeds.append(cur_new_input_embeds)
inputs_embeds = torch.stack(new_input_embeds, dim=0)
return super(LlaaaLlamaModel, self).forward(
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
inputs_embeds=inputs_embeds, use_cache=use_cache,
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
return_dict=return_dict
)
class LlaaaLlamaForCausalLM(LlamaForCausalLM):
config_class = LlaaaConfig
def __init__(self, config):
super(LlamaForCausalLM, self).__init__(config)
self.model = LlaaaLlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
audios: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
audios=audios
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"audios": kwargs.get("audios", None),
}
)
return model_inputs
def initialize_audio_tokenizer(self, tokenizer, device,
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
num_new_tokens = tokenizer.add_tokens([DEFAULT_AUDIO_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
num_new_tokens += tokenizer.add_tokens([DEFAULT_AUDIO_START_TOKEN, DEFAULT_AUDIO_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if tune_mm_mlp_adapter:
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if pretrain_mm_mlp_adapter and num_new_tokens > 0:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
assert num_new_tokens == 3
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
audio_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_AUDIO_PATCH_TOKEN])[0]
audio_start_token, audio_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_AUDIO_START_TOKEN, DEFAULT_AUDIO_END_TOKEN])
self.model.audio_tower[0].config.audio_patch_token = audio_patch_token
self.model.audio_tower[0].config.audio_start_token = audio_start_token
self.model.audio_tower[0].config.audio_end_token = audio_end_token
AutoConfig.register("llaaa", LlaaaConfig)
AutoModelForCausalLM.register(LlaaaConfig, LlaaaLlamaForCausalLM)