-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsimulation.py
138 lines (109 loc) · 5.13 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import jax.numpy as np
from jax.ops import index_add
from jax.api import jit
from jax_md import space
from jax_md import simulate, quantity
from utils import lennard_jones_pair_no_cutoff
boltzman_k = 1.380649e-23 # J/K
eV = 1.602176634e-19 # eV/J
# Units
sigma_0 = 1e-10 # m
mu_0 = 58e-27 # kg
tau_0 = 4e-14 # s
E_0 = mu_0*(sigma_0/tau_0)**2 # J
K_B_adjusted = boltzman_k / E_0
N_side = 5
N_A = N_side**2
N_B = (N_side-1)**2
species = np.array([0]*N_A + [1]*N_B, dtype=np.int32)
default_sigma = np.array([
[0.9, 0.6],
[0.6, 0.865]
], dtype=np.float32)
default_epsilon = np.array([
[1.14, 0.217],
[0.217, 1.]], dtype=np.float32)
displacement_fun, shift_fun = space.free()
dt = np.float32(1e-2)
def simulate_with_parameters(
epsilon=default_epsilon,
sigma=default_sigma):
# To reproduce the paper in all its surface enrgy glory,
# we compute all the pairwise interactions without a cutoff
energy_fun = lennard_jones_pair_no_cutoff(
displacement_fun, species=species, sigma=sigma, epsilon=epsilon)
init_fun, apply_fun = simulate.nve(energy_fun, shift_fun, dt=dt)
return init_fun, apply_fun, energy_fun
def get_temperature(state):
"""Returns temperature in K."""
return quantity.temperature(state.velocity, state.mass)/K_B_adjusted
def compute_angle_cos(a, b, c):
A2 = np.sum((b - c)**2, axis=1)
C2 = np.sum((a - b)**2, axis=1)
B2 = np.sum((a - c)**2, axis=1)
return (B2+C2-A2)*0.5/np.sqrt(C2*B2)
def compute_phase_angle_cos(posistions, N_A):
# N - 1 N^2 - N
# ...
# 0 N^2 - 1
# Will horribly fail for the differently indexed lattices
N = np.int32(np.sqrt(N_A))
a_index = np.arange(N_A).reshape((N, N))[:-1, :-1].ravel()
b_index = np.arange(N_A).reshape((N, N))[1:, :-1].ravel()
c_index = np.arange(N_A).reshape((N, N))[:-1, 1:].ravel()
return compute_angle_cos(posistions[a_index], posistions[b_index], posistions[c_index])
def compute_normalised_phase(positions, N_A, norms):
all_cos = compute_phase_angle_cos(positions, N_A)
# Sometimes we catch more than one cell
expanded_norms = np.expand_dims(norms, 1)
all_phases = np.arccos(all_cos) % expanded_norms
adjusted_phases = np.minimum(all_phases, expanded_norms-all_phases)
return adjusted_phases.mean(axis=1), adjusted_phases.std(axis=1)
def get_angular_momentum(position, mass, velocity):
return np.cross(position, (mass * velocity)).sum()
def get_angular_momentum_state(state):
return get_angular_momentum(state.position, state.mass, state.velocity)
def get_perpendicular(a):
# a is assumed to be a 3D array with two last dimensions being the vector
# TODO(kazeevn) more elegant
assert len(a.shape) == 2
assert a.shape[1] == 2
return np.cross(a, np.array((0, 0, 1)))[:, :2]/np.expand_dims(np.linalg.norm(a, axis=1), 1)
def get_momentum(velocity, mass):
return (velocity * mass).sum(axis=0)
def get_mean_momentum_state(state):
return (state.velocity * state.mass).mean(axis=0)
def init_at_temperature(key, positions, temeprature, init_fun, mass):
# T [a. u.] = mean(m*v**2)/dim
# T [K] = T [a. u.]/K_B_adjusted
mean_m_v2 = positions.shape[1]*temeprature*K_B_adjusted
# Positions is assumed to be an energy minimum
# For a thermodynamic equilibrium, energies must be equally
# distributed among the particles with different masses
mean_v2 = np.expand_dims(mean_m_v2 / mass, 1)
# v^2 = v_x^2+v_y^2+...
# TODO(kazeevn) remove jit
state = jit(init_fun)(key, positions, velocity_scale=mean_v2/positions.shape[1], mass=mass)
v_adjusted = state.velocity
# We set the total angular momentum around CoM at 0
center_of_mass = np.sum(state.mass*state.position, axis=0)/np.sum(state.mass)
position_rel_com = state.position - center_of_mass
angular_momentum = get_angular_momentum(position_rel_com, v_adjusted, state.mass)
com_distances = np.linalg.norm(position_rel_com, axis=1)
points_to_adjust = (com_distances > 0.1*com_distances.max())
p_abs_adjustment = angular_momentum/np.sum(com_distances[points_to_adjust])
p_adjustment = get_perpendicular(position_rel_com[points_to_adjust])*p_abs_adjustment
v_adjusted = index_add(v_adjusted,
points_to_adjust,
p_adjustment / np.expand_dims(mass[points_to_adjust], 1))
# We set the total momentum at 0
momentum = get_momentum(v_adjusted, state.mass)
v_adjusted = v_adjusted - momentum/np.sum(state.mass)
# Since we are interested in a specific temperature value, we rescale the velocities
kinetic_energy_mean = quantity.kinetic_energy(v_adjusted, state.mass) / positions.shape[0]
kinetic_energy_mean_target = mean_m_v2 * 0.5
# We also multiply v by sqrt(2), as the system is currently at the energy minimum,
# and in equlibrium potential energy \approx kinetic
# After relaxation temeprature doesn't fully match, as the relation is approximate
v_adjusted = v_adjusted * np.sqrt(2 * kinetic_energy_mean_target / kinetic_energy_mean)
return simulate.NVEState(state.position, v_adjusted, state.acceleration, state.mass)