-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathinfer.py
47 lines (41 loc) · 1.71 KB
/
infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
from peft import get_peft_model, LoraConfig, TaskType
from transformers import AutoTokenizer
from cover_belle2jsonl import format_example
from transformers import AutoModel
torch.set_default_tensor_type(torch.cuda.HalfTensor)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True,
device_map='auto')
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
peft_path = "output/belle/chatglm-lora.pt"
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM, inference_mode=True,
r=8,
lora_alpha=32, lora_dropout=0.1
)
model = get_peft_model(model, peft_config)
model.load_state_dict(torch.load(peft_path), strict=False)
torch.set_default_tensor_type(torch.cuda.FloatTensor)
answers = []
# instructions = json.load(open("data/belle_data.jsonl"))
instructions = [
{'input': '用一句话描述地球为什么是独一无二的', 'target': '地球上有适宜生命存在的条件和多样化的生命形式。'},
]
with torch.no_grad():
for idx, item in enumerate(instructions[:3]):
feature = format_example(item)
input_text = feature['context']
ids = tokenizer.encode(input_text)
input_ids = torch.LongTensor([ids])
out = model.generate(
input_ids=input_ids,
max_length=150,
do_sample=False,
temperature=0.0
)
out_text = tokenizer.decode(out[0])
answer = out_text.replace(input_text, "").replace("\nEND", "").strip()
item['output'] = answer
# print(out_text)
print(f"### {idx + 1}.Answer:\n", item.get('output'), '\n\n')
answers.append({'index': idx, **item})