forked from RESEARCHINGETERNITYEGPHILIPPOV/mm0
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathverifier.mm1
251 lines (220 loc) · 9.01 KB
/
verifier.mm1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import "compiler.mm1";
import "mm0.mm1";
---------------------------------------
-- Specification of a valid verifier --
---------------------------------------
--| The actual verifier ELF
def Verifier: string;
--| The verifier file is a valid ELF file
theorem Verifier_basicElf: $ isBasicElf Verifier $;
--| Given `mm0_file` on input, the verifier always terminates,
--| ensuring that the final input is empty (the entire input was consumed),
--| the output is empty (it outputs nothing), and the theorems in the
--| mm0 file are derivable.
theorem Verifier_terminates {input output: nat} (k mm0_file: nat):
$ initialConfig Verifier mm0_file k ->
terminates_ensuring k (S\ input, {output |
input = 0 /\ output = 0 /\ Valid mm0_file}) $;
--| Unpacking the above claim: if we set up an initial configuration
--| such that `mm0_file` is on standard in, and it runs to completion
--| having consumed the input and produced no output with exit code 0,
--| then the theorems in the input are derivable.
theorem Verifier_Valid (k mm0_file i o: nat):
$ initialConfig Verifier mm0_file k /\ succeeds k 0 0 ->
Valid mm0_file $ =
(named '(mpd (sylan terminates_ensuring_succeeds (anwl Verifier_terminates) anr) @
eexsabd @ eelabd @ a1i anr));
def Represents (env a_sorts a_terms a_thms: nat) = $ T. $;
do {
-- Import some constants from MM1
(mmc-add @ map (fn (x) '(const {{,x : u64} := (pure ,x)}))
'(O_RDONLY O_WRONLY O_CREAT O_TRUNC
MAP_FAILED MAP_PRIVATE MAP_ANONYMOUS))
-- This is just a scratchpad for now, some thoughts on MMC syntax and primitives.
(mmc-add '(
(intrinsic struct CStr
{(ghost len) : nat}
{buf : (array u8 {len + 1})}
{eq0 : (pure $ A. i (nth buf i = suc 0 <-> i = len) $)})
(intrinsic struct Stat
{st_dev : u64} {st_ino : u64} {st_nlink : u64}
{st_mode : u32} {st_uid : u32} {st_gid : u32} {_ : i32}
{st_rdev : u64} {st_size : i64}
{st_blksize : i64} {st_blocks : i64}
{st_atime : i64} {st_atime_nsec : i64}
{st_mtime : i64} {st_mtime_nsec : i64}
{st_ctime : i64} {st_ctime_nsec : i64}
{_ : (array i64 3)})
(intrinsic proc (sys_fstat {fd : u32}
(mut {(ghost buf) : (? Stat)}) {p : (&sn buf)} :
(out {buf : Stat})
u32))
(intrinsic proc (sys_open
{fname : (& CStr)}
{flags : {(sn O_RDONLY) or (sn {O_WRONLY + O_CREAT + O_TRUNC})}} :
u32))
(intrinsic proc (sys_mmap {pos : (sn {0 : u64})} {len : u64} {prot : u32}
{(ghost anon) : bool}
{flags : (sn {(if anon MAP_PRIVATE {MAP_PRIVATE + MAP_ANONYMOUS}) : u64})}
{fd : (if anon (sn {(- 1) : i64}) i64)}
{off : (sn {0 : u64})} :
{ret : (or
(struct {err : i64} (pure $ isIOError err $))
(own @ struct {ret : (array u8 len)} (pure $ anon -> all (sn 0) ret $)))}))
(struct File
(implicit @ ghost {len : nat})
{file : (& (array u8 len))}
{end : (sn {{file + len} : u64})})
(global {{F : (? File)} := uninit})
(struct Header0
{magic : u32} {version : u8} {num_sorts : u8} {_ : u16}
{num_terms : u32} {num_thms : u32}
{p_terms : u32} {p_thms : u32}
{p_proof : u32} {_ : u32}
{p_index : u64})
(struct Header {h : Header0} {sorts : (array u8 (h . num_sorts))})
(const {{MM0B_MAGIC : u32} := 0x42304D4D})
(const {{MM0B_VERSION : u8} := 1})
(const {{MAX_SORTS : u8} := 128})
(const {{CMD_END : u8} := 0})
(struct Term0 {num_args : u16} {sort : u8} {_ : u8} {p_args : u32})
(struct Thm0 {num_args : u16} {_ : u16} {p_args : u32})
(struct (CData A)
(implicit @ ghost {max : nat})
{buf : (& (array A max))})
(struct (MData A {c : (CData A)})
{cur : u32}
{dat : (ref (array A cur))}
{eq : {(c . buf) :> (&sn dat)}}
{le : {cur <= (c . max)}})
(struct Env {e : nat} {h : (pure $ Env e $)})
(struct CState
{sorts : (CData u8)}
{terms : (CData Term0)}
{thms : (CData Thm0)})
(struct (MState {c : CState})
{sorts : (MData u8 (c . sorts))}
{terms : (MData Term0 (c . terms))}
{thms : (MData Thm0 (c . thms))}
{env : Env}
{env2 : Env}
{ext : (pure $ EnvExtend env env2 $)}
{repr : (pure
{sorts := (sorts . dat)}
{terms := (terms . dat)}
{thms := (thms . dat)}
$ Represents env2 sorts terms thms $)})
(global {{C : (? CState)} := uninit})
(global {{M : (? (MState (cast C)))} := uninit})
(func (cmd_unpack {cmd : (& (array u8 5))} : u8 u8 u32)
{v := (index cmd 0)}
{w := {v band 0x3F}}
(match {v shr 6}
{0 => (return w 1 0)}
{1 => (return w 2 {(index cmd 1) as u32})}
{2 => (return w 3 {{(pun @ slice cmd 1 2) : u16} as u32})}
{3 => (return w 5 {(pun @ slice cmd 1 4) : u32})}
{_ => (unreachable _)}))
(proc (parse_until
(global {C : CState})
(mut @ global {M : (MState C)})
{stmt_type : u8}
{h : (match stmt_type
{CMD_STMT_SORT => {((M . sorts) . cur) < ((C . sorts) . max)}}
{_ => #f})} :
(out M {M2 : (MState C)})
{_ : (match stmt_type
{CMD_STMT_SORT => {((M2 . sorts) . cur) = {((M . sorts) . cur) + 1}}}
{_ => #f})}
))
(proc (verify
(global {F : File})
(mut @ ghost {input : Input}) :
(pure $ Valid input $))
{(len file end) := (ref F)}
{{p : (& Header0)} := (pun file (assert {(sizeof Header0) <= len}))}
(assert {(p . magic) = MM0B_MAGIC})
(assert {(p . version) = MM0B_VERSION})
{nsorts := (p . num_sorts)}
{h2 := (assert {nsorts <= MAX_SORTS})}
{{C : CState} <- (list
(list (& (slice file (sizeof Header) nsorts)))
(list (& (slice file (p . p_terms) (p . num_terms))))
(list (& (slice file (p . p_thms) (p . num_thms)))))}
{(dat eq) := (typeof (& (slice ((C . sorts) . buf) 0 0)))}
{(M . sorts) <- (list 0 dat eq)}
{(dat eq) := (typeof (& (slice ((C . terms) . buf) 0 0)))}
{(M . terms) <- (list 0 dat eq)}
{(dat eq) := (typeof (& (slice ((C . thms) . buf) 0 0)))}
{(M . thms) <- (list 0 dat eq)}
{(M . env) <- _}
{(M . env2) <- _}
{(M . ext) <- _}
{(M . repr) <- _}
{(ref M) : (MState C)}
{(ghost remainder) := {len - (p . p_proof)}}
{remainder_bd := (assert {{(p . p_proof) + 5} <= len})}
{stmt := (& (slice file (p . p_proof) remainder (entail remainder_bd _)))}
{{suff : {{stmt + remainder} = end}} := _}
(while {(index stmt 0 (entail remainder_bd _)) != CMD_END}
(variant {(p . p_proof) + 5} <= len := remainder_bd)
{((w sz data) h_unpack) := (sn (cmd_unpack stmt))}
{{remainder <- {remainder - data}} with {remainder -> old_rem}}
{next_stmt_bd := (assert {{stmt + data + 5} <= end})}
{remainder_bd <- (entail next_stmt_bd _)}
{next_stmt := (& (slice stmt data remainder
(entail next_stmt_bd suff _)))}
(match w
{CMD_STMT_SORT => (begin
(assert {data = sz})
{h := (assert {((M . sorts) . cur) < ((C . sorts) . max)})}
{(h_sorts repr2) := (parse_until CMD_STMT_SORT h)}
{((M . sorts) . cur) <- (cast {((M . sorts) . cur) + 1} (entail h _))}
{((M . sorts) . le) <- (cast ((M . sorts) . le) _)}
)}
{{CMD_STMT_DEF or CMD_STMT_LOCAL_DEF} => (begin
_ -- this marks unfinished code, the compiler will give an error
-- and provide the current type context
)}
)
{stmt <- next_stmt}
{suff <- (entail suff _)}
(continue
(variant (entail h_unpack remainder
-- proof of
-- w <> sz <> data = cmd_unpack (* stmt),
-- remainder = old_rem - data |- remainder < old_rem
_))))
(assert {((M . sorts) . cur) = ((C . sorts) . max)})
(assert {((M . terms) . cur) = ((C . terms) . max)})
(assert {((M . thms) . cur) = ((C . thms) . max)})
(entail (parse_until CMD_END) _))
(proc (main
{argc : u32}
{args : (& (array (& CStr) argc))}
(mut @ ghost {input : Input})
(mut @ ghost {output : (sn {0 : Output})}) :
(out {output : Output})
(pure $ output = 0 /\ Valid input $))
{(output2 oz) := output}
{output <- output2}
{fd := (sys_open (index args 1) O_RDONLY)}
(assert {0 <= {fd as i64}})
{{buf : (? Stat)} := uninit}
(begin
{n := (sys_fstat fd buf _)}
(assert {0 <= {n as i64}}))
{len := (buf . st_size)}
{(ptr h) := (typeof! (sys_mmap 0 len PROT_READ #f MAP_PRIVATE {fd as i64} 0))}
{{((ghost buf) file) : (own (array u8 len))} :=
(pun ptr (entail h (assert {ptr != MAP_FAILED})
-- proof of
-- ptr :: (union (sn {MAP_FAILED : u64})
-- (own (struct {ret : (array u8 len)} $ fd = bitsNeg 32 1 -> all (sn 0) ret $))) /\
-- ptr != MAP_FAILED
-- |- (ptr :: (own (array u8 len))
_))}
{{F : File} <- (list file (sn {(& (slice file len 0)) as u64}))}
(list oz (verify input)))
))
};