-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathlearn_image_filter.py
86 lines (70 loc) · 3.51 KB
/
learn_image_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import torch
import math
import os
import numpy as np
import time
import importlib
from DSS.utils.splatterIo import readCloud, readScene, saveAsPng, writeScene
from DSS.utils.trainer import FilterTrainer as Trainer
from DSS.options.filter_options import FilterOptions
from pytorch_points.network.operations import normalize_point_batch
from pytorch_points.utils.pc_utils import load
def trainImageFilter(scene, benchmark=False):
expr_dir = os.path.join(opt.output, opt.name)
if not os.path.isdir(expr_dir):
os.makedirs(expr_dir)
trainer = Trainer(opt, scene)
trainer.setup(opt, scene.cloud)
logInterval = math.floor(1+sum(opt.steps)//20)
renderForwardTime = 0.0
lossTime = 0.0
optimizerStep = 0.0
with torch.autograd.detect_anomaly():
with open(os.path.join(expr_dir, "loss.csv"), 'w') as loss_log:
for c in range(opt.cycles):
# creat new reference
tb = c*sum(opt.steps)+opt.startingStep
te = (c+1)*sum(opt.steps)+opt.startingStep
t = tb
with torch.no_grad():
trainer.create_reference(scene)
trainer.initiate_cycle()
for i, pair in enumerate(zip(trainer.groundtruths, trainer.predictions)):
post, pre = pair
diff = post - pre
saveAsPng(pre.cpu(), os.path.join(expr_dir, 't%03d_cam%d_init.png' % (t, i)))
saveAsPng(post.cpu(), os.path.join(expr_dir, 't%03d_cam%d_gt.png' % (t, i)))
saveAsPng(diff.cpu(), os.path.join(expr_dir, 't%03d_cam%d_diff.png' % (t, i)))
for t in range(tb, te):
if t % logInterval == 0 and not benchmark:
writeScene(scene, os.path.join(expr_dir, 't%03d' % t +
'_values.json'), os.path.join(expr_dir, 't%03d' % t + '.ply'))
trainer.optimize_parameters()
if t % logInterval == 0 and not benchmark:
for i, prediction in enumerate(trainer.predictions):
saveAsPng(prediction.detach().cpu()[0], os.path.join(expr_dir, 't%03d_cam%d' % (t, i) + ".png"))
if not benchmark:
loss_str = ",".join(["%.3f" % (100*v) for v in trainer.loss_image])
reg_str = ",".join(["%.3f" % (100*v) for v in trainer.loss_reg])
entries = [trainer.modifier] + [loss_str] + [reg_str]
loss_log.write(",".join(entries)+"\n")
print("{:03d} {}: lr {} loss ({}) \n : reg ({})".format(
t, trainer.modifier, trainer.lr, loss_str, reg_str))
trainer.finish_cycle()
writeScene(scene, os.path.join(expr_dir, 'final_scene.json'),
os.path.join(expr_dir, 'final_cloud.ply'))
if __name__ == "__main__":
opt = FilterOptions().parse()
torch.manual_seed(24)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(24)
# Create ground truth
scene = readScene(opt.source, device="cpu")
if opt.cloud:
points = readCloud(opt.cloud, device="cpu")
points_coords, _, _ = normalize_point_batch(
points[:, :3].unsqueeze(0), NCHW=False)
points[:, :3] = points_coords.squeeze(0)*2
scene.loadPoints(points)
trainImageFilter(scene, benchmark=opt.benchmark)