-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathsequences.py
90 lines (76 loc) · 3.41 KB
/
sequences.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
"""render a point cloud in 360 degree"""
from __future__ import division, print_function
import torch
import os
import argparse
import time
import numpy as np
from itertools import chain
from glob import glob
import sys
from DSS.utils.matrixConstruction import rotationMatrixY, rotationMatrixX, rotationMatrixZ, batchAffineMatrix
from DSS.utils.splatterIo import saveAsPng, readScene, readCloud, getBasename, writeCameras, writeScene
from DSS.core.renderer import createSplatter
from DSS.core.camera import CameraSampler
from DSS.options.render_options import RenderOptions
def rotMatrix(axis):
if axis.lower() == "x":
return rotationMatrixY
elif axis.lower() == "y":
return rotationMatrixY
else:
return rotationMatrixZ
if __name__ == "__main__":
opt = RenderOptions().parse()
points_paths = list(chain.from_iterable(glob(p) for p in opt.points))
assert(len(points_paths) > 0), "Found no point clouds with path {}".format(points_paths)
points_relpaths = None
if len(points_paths) > 1:
points_dir = os.path.commonpath(points_paths)
points_relpaths = [os.path.relpath(p, points_dir) for p in points_paths]
else:
points_relpaths = [os.path.basename(p) for p in points_paths]
torch.manual_seed(24)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(24)
scene = readScene(opt.source, device="cpu")
getRotationMatrix = rotMatrix(opt.rot_axis)
with torch.no_grad():
splatter = createSplatter(opt, scene=scene)
for i in range(len(scene.cameras)):
scene.cameras[i].width = opt.width
scene.cameras[i].height = opt.height
# scene.cameras[i].focalLength = opt.camFocalLength
splatter.initCameras(cameras=scene.cameras)
for pointPath, pointRelPath in zip(points_paths, points_relpaths):
keyName = os.path.join(opt.output, pointRelPath[:-4])
print(pointPath)
points = readCloud(pointPath, device="cpu")
fileName = getBasename(pointPath)
# find point center
center = torch.mean(points[:, :3], dim=0, keepdim=True)
points[:, :3] -= center
scene.loadPoints(points)
splatter.setCloud(scene.cloud)
splatter.pointPosition.data.copy_(center)
for i, cam in enumerate(scene.cameras):
# compute object rotation
cnt = 0
for ang in range(0, 360, 3):
rot = getRotationMatrix(torch.tensor(ang*np.pi/180).to(device=splatter.pointRotation.device))
splatter.pointRotation.data.copy_(rot.unsqueeze(0))
splatter.m2w = batchAffineMatrix(splatter.pointRotation, splatter.pointPosition, splatter.pointScale)
# set camera to look at the center
splatter.setCamera(i)
result = splatter.render()
if result is None:
continue
result = result.detach()[0]
if splatter.shading == "albedo":
cmax = 1
saveAsPng(result.cpu(), keyName + '_cam%02d_%03d.png' % (i, cnt), cmin=0, cmax=cmax)
else:
saveAsPng(result.cpu(), keyName + '_cam%02d_%03d.png' % (i, cnt), cmin=0)
cnt += 1
print(pointRelPath)