-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmodels.py
36 lines (29 loc) · 1.14 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import math
from torch import nn
class ESPCN(nn.Module):
def __init__(self, scale_factor, num_channels=1):
super(ESPCN, self).__init__()
self.first_part = nn.Sequential(
nn.Conv2d(num_channels, 64, kernel_size=5, padding=5//2),
nn.Tanh(),
nn.Conv2d(64, 32, kernel_size=3, padding=3//2),
nn.Tanh(),
)
self.last_part = nn.Sequential(
nn.Conv2d(32, num_channels * (scale_factor ** 2), kernel_size=3, padding=3 // 2),
nn.PixelShuffle(scale_factor)
)
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
if m.in_channels == 32:
nn.init.normal_(m.weight.data, mean=0.0, std=0.001)
nn.init.zeros_(m.bias.data)
else:
nn.init.normal_(m.weight.data, mean=0.0, std=math.sqrt(2/(m.out_channels*m.weight.data[0][0].numel())))
nn.init.zeros_(m.bias.data)
def forward(self, x):
x = self.first_part(x)
x = self.last_part(x)
return x