-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
114 lines (84 loc) · 3.84 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import argparse
import os
import copy
import torch
from torch import nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torch.utils.data.dataloader import DataLoader
from tqdm import tqdm
from models import ESPCN
from datasets import TrainDataset, EvalDataset
from utils import AverageMeter, calc_psnr
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--train-file', type=str, required=True)
parser.add_argument('--eval-file', type=str, required=True)
parser.add_argument('--outputs-dir', type=str, required=True)
parser.add_argument('--weights-file', type=str)
parser.add_argument('--scale', type=int, default=3)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--batch-size', type=int, default=16)
parser.add_argument('--num-epochs', type=int, default=200)
parser.add_argument('--num-workers', type=int, default=8)
parser.add_argument('--seed', type=int, default=123)
args = parser.parse_args()
args.outputs_dir = os.path.join(args.outputs_dir, 'x{}'.format(args.scale))
if not os.path.exists(args.outputs_dir):
os.makedirs(args.outputs_dir)
cudnn.benchmark = True
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
torch.manual_seed(args.seed)
model = ESPCN(scale_factor=args.scale).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam([
{'params': model.first_part.parameters()},
{'params': model.last_part.parameters(), 'lr': args.lr * 0.1}
], lr=args.lr)
train_dataset = TrainDataset(args.train_file)
train_dataloader = DataLoader(dataset=train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.num_workers,
pin_memory=True)
eval_dataset = EvalDataset(args.eval_file)
eval_dataloader = DataLoader(dataset=eval_dataset, batch_size=1)
best_weights = copy.deepcopy(model.state_dict())
best_epoch = 0
best_psnr = 0.0
for epoch in range(args.num_epochs):
for param_group in optimizer.param_groups:
param_group['lr'] = args.lr * (0.1 ** (epoch // int(args.num_epochs * 0.8)))
model.train()
epoch_losses = AverageMeter()
with tqdm(total=(len(train_dataset) - len(train_dataset) % args.batch_size), ncols=80) as t:
t.set_description('epoch: {}/{}'.format(epoch, args.num_epochs - 1))
for data in train_dataloader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
preds = model(inputs)
loss = criterion(preds, labels)
epoch_losses.update(loss.item(), len(inputs))
optimizer.zero_grad()
loss.backward()
optimizer.step()
t.set_postfix(loss='{:.6f}'.format(epoch_losses.avg))
t.update(len(inputs))
torch.save(model.state_dict(), os.path.join(args.outputs_dir, 'epoch_{}.pth'.format(epoch)))
model.eval()
epoch_psnr = AverageMeter()
for data in eval_dataloader:
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
with torch.no_grad():
preds = model(inputs).clamp(0.0, 1.0)
epoch_psnr.update(calc_psnr(preds, labels), len(inputs))
print('eval psnr: {:.2f}'.format(epoch_psnr.avg))
if epoch_psnr.avg > best_psnr:
best_epoch = epoch
best_psnr = epoch_psnr.avg
best_weights = copy.deepcopy(model.state_dict())
print('best epoch: {}, psnr: {:.2f}'.format(best_epoch, best_psnr))
torch.save(best_weights, os.path.join(args.outputs_dir, 'best.pth'))