-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathexport_model.py
105 lines (87 loc) · 2.79 KB
/
export_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import os
import coremltools
import torch
import torch.nn as nn
import copy
from timm import create_model
import model
import utils
import torchvision
def parse_args(parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser.add_argument(
"--variant", type=str, required=True, help="Provide shvit model variant name."
)
parser.add_argument(
"--output-dir",
type=str,
default=".",
help="Provide location to save exported models.",
)
parser.add_argument(
"--checkpoint",
type=str,
default=None,
help="Provide location of trained checkpoint.",
)
parser.add_argument(
"--res_h",
type=int,
default=256,
help="Provide resolution of input",
)
parser.add_argument(
"--res_w",
type=int,
default=256,
help="Provide resolution of input",
)
return parser
def export(variant: str, output_dir: str, checkpoint: str = None, res_h: int = 256, res_w: int = 256) -> None:
"""Method exports coreml package for mobile inference.
Args:
variant: shvit model variant.
output_dir: Path to save exported model.
checkpoint: Path to trained checkpoint. Default: ``None``
"""
# Create output directory.
os.makedirs(output_dir, exist_ok=True)
# Random input tensor for tracing purposes.
inputs = torch.rand(1, 3, res_h, res_w)
inputs_tensor = [
coremltools.TensorType(
name="images",
shape=inputs.shape,
)
]
# Instantiate model variant.
model = create_model(variant)
if checkpoint is not None:
print(f"Load checkpoint {checkpoint}")
chkpt = torch.load(checkpoint)
model.load_state_dict(chkpt["state_dict"])
utils.replace_batchnorm(model)
print(f"Export and Convert Model: {variant}")
n_parameters = sum(p.numel()
for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
model.eval()
# Trace and export.
traced_model = torch.jit.trace(model, torch.Tensor(inputs))
output_path = os.path.join(output_dir, variant)
output_path = output_path + f"_{res_h}" + f"_{res_w}"
pt_name = output_path + f"_{res_h}" + ".pt"
traced_model.save(pt_name)
ml_model = coremltools.convert(
model=pt_name,
outputs=None,
inputs=inputs_tensor,
convert_to="mlprogram",
debug=False,
)
ml_model.save(output_path + ".mlpackage")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Script to export coreml package file")
parser = parse_args(parser)
args = parser.parse_args()
export(args.variant, args.output_dir, args.checkpoint, args.res_h, args.res_w)