-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
213 lines (192 loc) · 9.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
import pdb
import sys
import cv2
import yaml
import torch
import random
import importlib
import faulthandler
import numpy as np
import torch.nn as nn
from collections import OrderedDict
faulthandler.enable()
import utils
from modules.sync_batchnorm import convert_model
from seq_scripts import seq_train, seq_eval, seq_feature_generation
class Processor():
def __init__(self, arg):
self.arg = arg
self.save_arg()
if self.arg.random_fix:
self.rng = utils.RandomState(seed=self.arg.random_seed)
self.device = utils.GpuDataParallel()
self.recoder = utils.Recorder(self.arg.work_dir, self.arg.print_log, self.arg.log_interval)
self.dataset = {}
self.data_loader = {}
self.gloss_dict = np.load(self.arg.dataset_info['dict_path'], allow_pickle=True).item()
self.arg.model_args['num_classes'] = len(self.gloss_dict) + 1
self.model, self.optimizer = self.loading()
def start(self):
if self.arg.phase == 'train':
self.recoder.print_log('Parameters:\n{}\n'.format(str(vars(self.arg))))
seq_model_list = []
for epoch in range(self.arg.optimizer_args['start_epoch'], self.arg.num_epoch):
save_model = epoch % self.arg.save_interval == 0
eval_model = epoch % self.arg.eval_interval == 0
# train end2end model
seq_train(self.data_loader['train'], self.model, self.optimizer,
self.device, epoch, self.recoder)
if eval_model:
dev_wer = seq_eval(self.arg, self.data_loader['dev'], self.model, self.device,
'dev', epoch, self.arg.work_dir, self.recoder, self.arg.evaluate_tool)
self.recoder.print_log("Dev WER: {:05.2f}%".format(dev_wer))
if save_model:
model_path = "{}dev_{:05.2f}_epoch{}_model.pt".format(self.arg.work_dir, dev_wer, epoch)
seq_model_list.append(model_path)
print("seq_model_list", seq_model_list)
self.save_model(epoch, model_path)
elif self.arg.phase == 'test':
if self.arg.load_weights is None and self.arg.load_checkpoints is None:
raise ValueError('Please appoint --load-weights.')
self.recoder.print_log('Model: {}.'.format(self.arg.model))
self.recoder.print_log('Weights: {}.'.format(self.arg.load_weights))
# train_wer = seq_eval(self.arg, self.data_loader["train_eval"], self.model, self.device,
# "train", 6667, self.arg.work_dir, self.recoder, self.arg.evaluate_tool)
dev_wer = seq_eval(self.arg, self.data_loader["dev"], self.model, self.device,
"dev", 6667, self.arg.work_dir, self.recoder, self.arg.evaluate_tool)
test_wer = seq_eval(self.arg, self.data_loader["test"], self.model, self.device,
"test", 6667, self.arg.work_dir, self.recoder, self.arg.evaluate_tool)
self.recoder.print_log('Evaluation Done.\n')
elif self.arg.phase == "features":
for mode in ["train", "dev", "test"]:
seq_feature_generation(
self.data_loader[mode + "_eval" if mode == "train" else mode],
self.model, self.device, mode, self.arg.work_dir, self.recoder
)
def save_arg(self):
arg_dict = vars(self.arg)
if not os.path.exists(self.arg.work_dir):
os.makedirs(self.arg.work_dir)
with open('{}/config.yaml'.format(self.arg.work_dir), 'w') as f:
yaml.dump(arg_dict, f)
def save_model(self, epoch, save_path):
torch.save({
'epoch': epoch,
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'scheduler_state_dict': self.optimizer.scheduler.state_dict(),
'rng_state': self.rng.save_rng_state(),
}, save_path)
def loading(self):
self.device.set_device(self.arg.device)
print("Loading model")
model_class = import_class(self.arg.model)
model = model_class(
**self.arg.model_args,
gloss_dict=self.gloss_dict,
loss_weights=self.arg.loss_weights,
)
optimizer = utils.Optimizer(model, self.arg.optimizer_args)
if self.arg.load_weights:
self.load_model_weights(model, self.arg.load_weights)
elif self.arg.load_checkpoints:
self.load_checkpoint_weights(model, optimizer)
model = self.model_to_device(model)
print("Loading model finished.")
self.load_data()
return model, optimizer
def model_to_device(self, model):
model = model.to(self.device.output_device)
if len(self.device.gpu_list) > 1:
model.conv2d = nn.DataParallel(
model.conv2d,
device_ids=self.device.gpu_list,
output_device=self.device.output_device)
model = convert_model(model)
model.cuda()
return model
def load_model_weights(self, model, weight_path):
state_dict = torch.load(weight_path)
if len(self.arg.ignore_weights):
for w in self.arg.ignore_weights:
if state_dict.pop(w, None) is not None:
print('Successfully Remove Weights: {}.'.format(w))
else:
print('Can Not Remove Weights: {}.'.format(w))
weights = self.modified_weights(state_dict['model_state_dict'], False)
# weights = self.modified_weights(state_dict['model_state_dict'])
model.load_state_dict(weights, strict=True)
@staticmethod
def modified_weights(state_dict, modified=False):
state_dict = OrderedDict([(k.replace('.module', ''), v) for k, v in state_dict.items()])
if not modified:
return state_dict
modified_dict = dict()
return modified_dict
def load_checkpoint_weights(self, model, optimizer):
self.load_model_weights(model, self.arg.load_checkpoints)
state_dict = torch.load(self.arg.load_checkpoints)
if len(torch.cuda.get_rng_state_all()) == len(state_dict['rng_state']['cuda']):
print("Loading random seeds...")
self.rng.set_rng_state(state_dict['rng_state'])
if "optimizer_state_dict" in state_dict.keys():
print("Loading optimizer parameters...")
optimizer.load_state_dict(state_dict["optimizer_state_dict"])
optimizer.to(self.device.output_device)
if "scheduler_state_dict" in state_dict.keys():
print("Loading scheduler parameters...")
optimizer.scheduler.load_state_dict(state_dict["scheduler_state_dict"])
self.arg.optimizer_args['start_epoch'] = state_dict["epoch"] + 1
self.recoder.print_log("Resuming from checkpoint: epoch {self.arg.optimizer_args['start_epoch']}")
def load_data(self):
print("Loading data")
self.feeder = import_class(self.arg.feeder)
dataset_list = zip(["train", "train_eval", "dev", "test"], [True, False, False, False])
for idx, (mode, train_flag) in enumerate(dataset_list):
arg = self.arg.feeder_args
arg["prefix"] = self.arg.dataset_info['dataset_root']
arg["mode"] = mode.split("_")[0]
arg["transform_mode"] = train_flag
self.dataset[mode] = self.feeder(gloss_dict=self.gloss_dict, **arg)
self.data_loader[mode] = self.build_dataloader(self.dataset[mode], mode, train_flag)
print("Loading data finished.")
def build_dataloader(self, dataset, mode, train_flag):
return torch.utils.data.DataLoader(
dataset,
batch_size=self.arg.batch_size if mode == "train" else self.arg.test_batch_size,
shuffle=train_flag,
drop_last=train_flag,
num_workers=self.arg.num_worker, # if train_flag else 0
collate_fn=self.feeder.collate_fn,
)
def import_class(name):
components = name.rsplit('.', 1)
mod = importlib.import_module(components[0])
mod = getattr(mod, components[1])
return mod
if __name__ == '__main__':
# Kosongkan cache CUDA
torch.cuda.empty_cache()
sparser = utils.get_parser()
p = sparser.parse_args()
# p.config = "baseline_iter.yaml"
if p.config is not None:
with open(p.config, 'r') as f:
try:
default_arg = yaml.load(f, Loader=yaml.FullLoader)
except AttributeError:
default_arg = yaml.load(f)
key = vars(p).keys()
for k in default_arg.keys():
if k not in key:
print('WRONG ARG: {}'.format(k))
assert (k in key)
sparser.set_defaults(**default_arg)
args = sparser.parse_args()
with open(f"./configs/{args.dataset}.yaml", 'r') as f:
args.dataset_info = yaml.load(f, Loader=yaml.FullLoader)
processor = Processor(args)
utils.pack_code("./", args.work_dir)
processor.start()