-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathrun.py
95 lines (79 loc) · 3.73 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import pprint
from typing import List
import pyrallis
import torch
from PIL import Image
from config import RunConfig
from pipeline_attend_and_excite import AttendAndExcitePipeline
from utils import ptp_utils, vis_utils
from utils.ptp_utils import AttentionStore
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
def load_model(config: RunConfig):
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
if config.sd_2_1:
stable_diffusion_version = "stabilityai/stable-diffusion-2-1-base"
else:
stable_diffusion_version = "CompVis/stable-diffusion-v1-4"
stable = AttendAndExcitePipeline.from_pretrained(stable_diffusion_version).to(device)
return stable
def get_indices_to_alter(stable, prompt: str) -> List[int]:
token_idx_to_word = {idx: stable.tokenizer.decode(t)
for idx, t in enumerate(stable.tokenizer(prompt)['input_ids'])
if 0 < idx < len(stable.tokenizer(prompt)['input_ids']) - 1}
pprint.pprint(token_idx_to_word)
token_indices = input("Please enter the a comma-separated list indices of the tokens you wish to "
"alter (e.g., 2,5): ")
token_indices = [int(i) for i in token_indices.split(",")]
print(f"Altering tokens: {[token_idx_to_word[i] for i in token_indices]}")
return token_indices
def run_on_prompt(prompt: List[str],
model: AttendAndExcitePipeline,
controller: AttentionStore,
token_indices: List[int],
seed: torch.Generator,
config: RunConfig) -> Image.Image:
if controller is not None:
ptp_utils.register_attention_control(model, controller)
outputs = model(prompt=prompt,
attention_store=controller,
indices_to_alter=token_indices,
attention_res=config.attention_res,
guidance_scale=config.guidance_scale,
generator=seed,
num_inference_steps=config.n_inference_steps,
max_iter_to_alter=config.max_iter_to_alter,
run_standard_sd=config.run_standard_sd,
thresholds=config.thresholds,
scale_factor=config.scale_factor,
scale_range=config.scale_range,
smooth_attentions=config.smooth_attentions,
sigma=config.sigma,
kernel_size=config.kernel_size,
sd_2_1=config.sd_2_1)
image = outputs.images[0]
return image
@pyrallis.wrap()
def main(config: RunConfig):
stable = load_model(config)
token_indices = get_indices_to_alter(stable, config.prompt) if config.token_indices is None else config.token_indices
images = []
for seed in config.seeds:
print(f"Seed: {seed}")
g = torch.Generator('cuda').manual_seed(seed)
controller = AttentionStore()
image = run_on_prompt(prompt=config.prompt,
model=stable,
controller=controller,
token_indices=token_indices,
seed=g,
config=config)
prompt_output_path = config.output_path / config.prompt
prompt_output_path.mkdir(exist_ok=True, parents=True)
image.save(prompt_output_path / f'{seed}.png')
images.append(image)
# save a grid of results across all seeds
joined_image = vis_utils.get_image_grid(images)
joined_image.save(config.output_path / f'{config.prompt}.png')
if __name__ == '__main__':
main()