-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpath_plot.py
46 lines (39 loc) · 1.26 KB
/
path_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import re, math
import matplotlib.pyplot as plt
infile = 'mypath-1Feb2018.out-2D-GCM'
myfile = open(infile,'r')
mydata = myfile.readlines()
x_out, y_out = [], []
x_exit, y_exit = [], []
x_path, y_path = [], []
actn = []
for line in mydata:
if re.match('.*Exit point.*',line): # Actually-attained outer turning points
mycols = line.split(' ')
mycols = filter(None,mycols)
x_exit.append(float(mycols[3]))
y_exit.append(float(mycols[4]))
actn.append(float(mycols[5]))
if re.match('.*path:.*',line): # Minimum action path
mycols = line.split(' ')
mycols = filter(None,mycols)
x_path.append(float(mycols[1]))
y_path.append(float(mycols[2]))
plt.plot(x_out, y_out, 'k+')
plt.plot(x_exit, y_exit, 'r^')
plt.plot(x_path, y_path, 'b')
plt.xlim(0,400)
plt.ylim(0,50)
plt.xlabel('q20')
plt.ylabel('q30')
plt.show()
smin = min(actn)
exit_probs = open('exit_probs.out','w')
for x,y,s in zip(x_exit,y_exit,actn):
# try:
# prob = 1.0/(1+math.exp(2*s))
# except:
# prob = float('inf')
prob = math.exp(2*(smin-s)) # approximate ratio of tunneling prob compared to max tunneling prob/min action path
exit_probs.write('{:>5} {:>5} {:>12.5}\n'.format(x,y,prob))
exit_probs.close()