-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlibactive.py
769 lines (652 loc) · 28.1 KB
/
libactive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
import time
import pickle
import os
import json
import zipfile
import logging
from copy import deepcopy
from typing import Tuple, Callable
from contextlib import contextmanager
import sklearn
import dill
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from celluloid import Camera
try:
from IPython.core.display import display
except ModuleNotFoundError:
pass
from modAL import disagreement
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from joblib import Parallel, delayed
from scipy.sparse import csr_matrix
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import Perceptron
from sklearn.tree import DecisionTreeClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.base import clone
from sklearn import calibration
from sklearn.svm import SVC
from sklearn.metrics.pairwise import euclidean_distances
from modAL.utils.data import data_vstack
from modAL.uncertainty import _proba_uncertainty, classifier_uncertainty
import scipy
from libutil import Metrics, atomic_write, out_dir
from libstore import store, CompressedStore
from libconfig import Config
from modal_learner import IndexLearner
logger = logging.getLogger(__name__)
def active_split(
X,
Y,
test_size=0.5,
labeled_size=0.1,
shuffle=True,
ensure_y=False,
random_state=None,
mutator=lambda *args, **kwargs: args,
config_str=None,
i=None,
):
"""
Split data into three sets:
* Labeled training set (0.1)
* Unlabeled training set, to be queried (0.4)
* Labeled test (0.5)
"""
X_train, X_test, Y_train, Y_test = train_test_split(
X, Y, test_size=test_size, shuffle=shuffle, random_state=random_state
)
# Apply a mutator (noise, unbalance, bias, etc) to the dataset
X_unlabelled, X_test, Y_oracle, Y_test = mutator(
X_train,
X_test,
Y_train,
Y_test,
rand=random_state,
config_str=config_str,
i=i,
test_size=test_size,
shuffle=shuffle,
)
unique = np.unique(np.concatenate((Y_test, Y_oracle)))
X_labelled = (
np.empty((0, X_unlabelled.shape[1]))
if not isinstance(X, scipy.sparse.csr_matrix)
else scipy.sparse.csr_matrix((0, X_unlabelled.shape[1]))
)
Y_labelled = np.empty(0 if len(Y_oracle.shape) == 1 else (0, Y_oracle.shape[1]))
# ensure a label for all classes made it in to the initial train and validation sets
for klass in unique:
if not np.isin(klass, Y_labelled):
# First value chosen is effectively constant random as the dataset is shuffled
idx = np.where(Y_oracle == klass)[0][0]
Y_labelled = np.concatenate((Y_labelled, [Y_oracle[idx]]), axis=0)
if isinstance(X_unlabelled, scipy.sparse.csr_matrix):
X_labelled = csr_vappend(X_labelled, X_unlabelled[idx])
else:
X_labelled = np.concatenate((X_labelled, [X_unlabelled[idx]]), axis=0)
Y_oracle = np.delete(Y_oracle, idx, axis=0)
if isinstance(X_unlabelled, scipy.sparse.csr_matrix):
X_unlabelled = delete_from_csr(X_unlabelled, row_indices=[idx])
else:
X_unlabelled = np.delete(X_unlabelled, idx, axis=0)
if labeled_size < 1:
labeled_size = labeled_size * X.shape[0]
if X_labelled.shape[0] < labeled_size:
idx = random_state.choice(
X_unlabelled.shape[0], labeled_size - X_labelled.shape[0], replace=False
)
Y_labelled = np.concatenate((Y_labelled, Y_oracle[idx]), axis=0)
if isinstance(X_unlabelled, scipy.sparse.csr_matrix):
X_labelled = csr_vappend(X_labelled, X_unlabelled[idx])
else:
X_labelled = np.concatenate((X_labelled, X_unlabelled[idx]), axis=0)
Y_oracle = np.delete(Y_oracle, idx, axis=0)
if isinstance(X_unlabelled, scipy.sparse.csr_matrix):
X_unlabelled = delete_from_csr(X_unlabelled, row_indices=idx)
else:
X_unlabelled = np.delete(X_unlabelled, idx, axis=0)
# Sanity checks
assert (
X_labelled.shape[0] == Y_labelled.shape[0]
and Y_labelled.shape[0] >= labeled_size
), "Labelled length inconsistent"
assert X_unlabelled.shape[0] == Y_oracle.shape[0], "Unlabelled length inconsistent"
assert X_test.shape[0] == Y_test.shape[0], "Test length inconsistent"
assert (
X_labelled.shape[1] == X_unlabelled.shape[1] == X_test.shape[1]
), "X shape inconsistent"
return X_labelled, X_unlabelled, Y_labelled, Y_oracle, X_test, Y_test
class MyActiveLearner:
def __init__(
self,
X_labelled,
X_unlabelled,
Y_labelled,
Y_oracle,
X_test,
Y_test,
query_strategy,
config,
metrics=None,
i=None,
):
# Varying sets
self._initial_X_labelled = X_labelled
self._initial_X_unlabelled = X_unlabelled
self._initial_Y_labelled = Y_labelled
self._initial_Y_oracle = Y_oracle
# Associated index sets
self._taught_idx = np.array([], dtype=int)
# Constant sets
self.X_test = X_test
self.Y_test = Y_test
self.query_strategy = query_strategy
self.unique_labels = np.unique(Y_test)
stop_func = config.meta.get("stop_function", ("default", lambda learner: False))
self.stop_function = stop_func[1]
self.stop_function_name = stop_func[0]
self.ret_classifiers = config.meta.get("ret_classifiers", False)
self.stop_info = config.meta.get("stop_info", False)
self.config_str = config.serialize()
self.i = i
self.pool_subsample = config.meta.get("pool_subsample", None)
self.model = config.model_name.lower()
self.dataset_name = config.dataset_name
self.cleanup_checkpoints = True
self.metrics = Metrics(metrics=metrics)
self.iteration = 0
# Configuration string for a previous run
self.config_str_1000 = self.config_str.replace(
self.stop_function_name, "len1000"
)
# Validate expected error method
ee = config.meta.get("ee", "offline")
if ee == "online":
self.ee = expected_error_online
elif ee == "offline":
self.ee = expected_error
else:
raise ValueError(f"ee must be online or offline, got {ee}")
def __setup_learner(self):
kwargs = {
"X_training": self.X_labelled,
"y_training": self.Y_labelled,
"X_unlabelled": self._initial_X_unlabelled,
"y_unlabelled": self._initial_Y_oracle,
"query_strategy": self.query_strategy,
}
if self.model == "svm-linear":
return IndexLearner(
estimator=SVC(kernel="linear", probability=True), **kwargs
)
elif self.model == "thunder-svm-linear":
return IndexLearner(
estimator=ThunderSVC(kernel="linear", probability=True), **kwargs
)
elif self.model == "svm-rbf":
return IndexLearner(estimator=SVC(kernel="rbf", probability=True), **kwargs)
elif self.model == "svm-poly":
return IndexLearner(
estimator=SVC(kernel="poly", probability=True), **kwargs
)
elif self.model == "random-forest":
return IndexLearner(estimator=RandomForestClassifier(), **kwargs)
elif self.model == "decision-tree":
return IndexLearner(estimator=DecisionTreeClassifier(), **kwargs)
elif self.model == "gaussian-nb":
return IndexLearner(estimator=GaussianNB(), **kwargs)
elif self.model == "k-neighbors":
return IndexLearner(estimator=KNeighborsClassifier(), **kwargs)
elif self.model == "perceptron":
return IndexLearner(estimator=Perceptron(), **kwargs)
elif self.model == "neural-network":
return IndexLearner(
estimator=MLPClassifier(
hidden_layer_sizes=(100,), # default
activation="relu", # default
),
**kwargs,
)
else:
raise Exception("unknown model")
def stop_function_adapter(self, learner, *args):
"Adapter which allows stop functions which don't accept *args"
try:
return self.stop_function(learner, *args)
except TypeError:
return self.stop_function(learner)
def active_learn2(self) -> Tuple[list, list]:
"""
Perform active learning on the given dataset, querying data with the given query strategy.
Returns metrics describing the performance of the query strategy, and optionally all classifiers trained during learning.
"""
# If this experiment run has been completed previously return the saved result
cached = self._restore_run()
if cached is not None:
return cached
# Attempt to restore a checkpoint
checkpoint = self._restore_checkpoint()
if checkpoint is None:
past_run_1000 = self.try_restore_1000()
if past_run_1000 is not None:
print("Restoring from previous 1000 instance run")
self = past_run_1000
# Required so we don't overwrite the classifier file below!
checkpoint = True
else:
self.learner = self.__setup_learner()
self.metrics.collect(
self.X_labelled.shape[0],
self.learner.estimator,
self.Y_test,
self.X_test,
)
else:
print("Restoring from checkpoint")
# FIXME: Does this actually work how I expect...?
self.__dict__ = checkpoint.__dict__
# self = checkpoint
# Classifiers are stored as a local and explicitly restored as they need to be
# compressed before being stored.
with store(
f"{out_dir()}/classifiers/{self.config_str}_{self.i}.zip",
# References to these are held in stores
self._initial_X_labelled,
self._initial_X_unlabelled,
self._initial_Y_labelled,
self._initial_Y_oracle,
enable=self.ret_classifiers,
restore=checkpoint is not None,
) as classifiers:
# Initial subsampling, this should probably be done somewhere else tbh...
if checkpoint is None:
self._update_subsample()
if self.ret_classifiers and len(classifiers) == 0:
classifiers.append(deepcopy(self.learner))
# Do the active learning!
# Need to make sure we check the stop function before writing to any result files
# in case we restore from a past 1000 checkpoint (because we no longer delete them)
# even though we don't need to do any more work.
# TODO: Change mandatory check to >= 500 if we keep the reserve?
while self.X_unlabelled.shape[0] >= 10 and not self.stop_function_adapter(
self.learner, self.metrics, self
):
self.active_learn_iter(classifiers)
# Write the experiment run results and (possibly) cleanup intermediate checkpoints
self._write_run(self.metrics)
self._cleanup_checkpoint()
return self.metrics
def active_learn_iter(self, classifiers):
print(f"Starting iteration {self.iteration}")
# QUERY -------------------------------------------------------------------------------------
t_start = time.monotonic()
query_idx, query_points, extra_metrics = self.learner.query(self.X_subsampled)
t_elapsed = time.monotonic() - t_start
# PRE METRICS -------------------------------------------------------------------------------
t_ee_start = time.monotonic()
if any(
"expected_error" in metric_name if isinstance(metric_name, str) else False
for metric_name in self.metrics.metrics
):
result = self.ee(
self.learner, self.X_subsampled, unique_labels=self.unique_labels
)
extra_metrics["expected_error_min"] = np.min(result)
extra_metrics["expected_error_max"] = np.max(result)
extra_metrics["expected_error_average"] = np.mean(result)
extra_metrics["expected_error_variance"] = np.var(result)
extra_metrics["time_ee"] = time.monotonic() - t_ee_start
if "contradictory_information" in self.metrics.metrics:
# https://stackoverflow.com/questions/32074239/sklearn-getting-distance-of-each-point-from-decision-boundary
predictions = self.learner.predict(query_points)
uncertainties = classifier_uncertainty(self.learner.estimator, query_points)
# TRAIN -------------------------------------------------------------------------------------
# This has the effect of applying the subsampled index to the unlabelled pool then
# applying the query index
self.learner.teach(self._index_X_subsampled[query_idx])
# POST METRICS ------------------------------------------------------------------------------
if "contradictory_information" in self.metrics.metrics:
contradictory_information = np.sum(
uncertainties[predictions != self.Y_oracle[query_idx]]
/ np.mean(uncertainties)
)
extra_metrics["contradictory_information"] = contradictory_information
# Update taught instances
self._taught_idx = np.concatenate(
(self._taught_idx, self._index_X_subsampled[query_idx])
)
# Resubsample the unlabelled pool. This must happen after we retrain but before metrics are calculated
# as the subsampled unlabelled pool must be disjoint from the trained instances.
self._update_subsample()
extra_metrics["time_total"] = time.monotonic() - t_start
self.metrics.collect(
self.metrics.frame.x.iloc[-1] + len(query_idx),
self.learner.estimator,
self.Y_test,
self.X_test,
time=t_elapsed, # query time
X_unlabelled=self.X_subsampled,
unique_labels=self.unique_labels,
**extra_metrics,
)
if self.ret_classifiers:
classifiers.append(self.learner)
self.iteration += 1
self._checkpoint(self)
def _update_subsample(self):
mask = np.ones(self._initial_X_unlabelled.shape[0], dtype=bool)
mask[self._taught_idx] = False
indexes = np.where(mask)[0]
if self.pool_subsample is not None:
self._index_X_subsampled = np.random.choice(
indexes,
min(self.pool_subsample, self.X_unlabelled.shape[0]),
replace=False,
)
else:
self._index_X_subsampled = indexes
@property
def X_subsampled(self):
return self._initial_X_unlabelled[self._index_X_subsampled]
@property
def y_subsampled(self):
return self._initial_y_unlabelled[self._index_X_subsampled]
@property
def X_unlabelled(self):
mask = np.ones(self._initial_X_unlabelled.shape[0], dtype=bool)
mask[self._taught_idx] = False
return self._initial_X_unlabelled[mask]
@property
def Y_oracle(self):
mask = np.ones(self._initial_X_unlabelled.shape[0], dtype=bool)
mask[self._taught_idx] = False
return self._initial_Y_oracle[mask]
@property
def X_labelled(self):
if isinstance(self._initial_X_labelled, csr_matrix):
return scipy.sparse.vstack(
(self._initial_X_labelled, self._initial_X_unlabelled[self._taught_idx])
)
else:
return data_vstack(
(self._initial_X_labelled, self._initial_X_unlabelled[self._taught_idx])
)
@property
def Y_labelled(self):
if isinstance(self._initial_Y_labelled, csr_matrix):
return scipy.sparse.vstack(
(self._initial_Y_labelled, self._initial_Y_oracle[self._taught_idx])
)
else:
return data_vstack(
(self._initial_Y_labelled, self._initial_Y_oracle[self._taught_idx])
)
def _checkpoint(self, data):
file = f"{out_dir()}/checkpoints/{self.config_str}_{self.i}.pickle"
for i in range(3):
try:
# Guard against writing partial checkpoints by using an atomic copy.
with atomic_write(file, "wb") as f:
dill.dump(data, f)
break
except Exception as e:
print(f"Failed attempt {i+1} of 3 to write to checkpoint {file}: {e}")
pass
def try_restore_1000(self):
"Try to restore from a previous run that was terminated at 1000 instances."
# DISABLED
if True:
return None
# This is a bad way to do it, but it is what it is. We only have ~5 spare characters
# in the result filenames.
if self.stop_function_name == "len1000":
return None
try:
# If in future we need to restore again from runs this is where the test needs to happen
# though in this case we should have checkpoints (as we don't remove them for resumed runs)
# so it'll be a bit easier (& faster).
print(f"Reading past result from {self.config_str_1000} ({self.i})")
cached_config, metrics_list = self._read_result(
self.config_str_1000, runs=[self.i]
)
metrics = metrics_list[0] # first and only requested run
classifiers = self.__read_classifiers(self.config_str_1000, i=self.i)
except FileNotFoundError:
print("Could not restore from 1000 instance run")
return None
assert (
len(classifiers) == 100
), f"Could not restore from 1000 instance run as it has {len(classifiers)}!=100 iterations"
assert (
len(metrics.x) == 100
), f"Could not restore from 1000 instance run as it has {len(metrics.x)}!=100 iterations"
self.metrics.frame = metrics
dense_atol = 1e-1 if self.dataset_name == "swarm" else 1e-3
self.X_unlabelled, self.Y_oracle = reconstruct_last_unlabelled(
classifiers, self.X_unlabelled, self.Y_oracle, dense_atol=dense_atol
)
self.learner = classifiers[-1]
classifiers.close()
self._update_subsample()
self.cleanup_checkpoints = False
return self
def _read_result(self, config_str, runs):
results = []
for name in [f"{out_dir()}{os.path.sep}{config_str}_{i}.csv" for i in runs]:
with open(name, "r") as f:
cached_config = Config(
**{"model_name": "svm-linear", **json.loads(f.readline())}
)
results.append(pd.read_csv(f, index_col=0))
# make the run numbers available
cached_config.runs = runs
return cached_config, results
def __read_classifiers(self, config_str, i):
zfile = f"{out_dir()}{os.path.sep}classifiers{os.path.sep}{config_str}_{i}.zip"
return CompressedStore(zfile, read=True)
def _restore_checkpoint(self):
file = f"{out_dir()}/checkpoints/{self.config_str}_{self.i}.pickle"
try:
with open(file, "rb") as f:
my_active_learner = dill.load(f)
my_active_learner.learner._X_training = self._initial_X_labelled
my_active_learner.learner._y_training = self._initial_Y_labelled
my_active_learner.learner._X_unlabelled = self._initial_X_unlabelled
my_active_learner.learner._y_unlabelled = self._initial_Y_oracle
return my_active_learner
except FileNotFoundError:
return None
except EOFError as e:
raise Exception(f"Failed to load checkpoint {file}") from e
def _cleanup_checkpoint(self):
file = f"{out_dir()}/checkpoints/{self.config_str}_{self.i}.pickle"
if self.cleanup_checkpoints:
try:
os.remove(file)
except FileNotFoundError:
pass
else:
print(f"Cleaning checkpoints disabled, not removing {file}")
def _write_run(self, data):
file = f"{out_dir()}/runs/{self.config_str}_{self.i}.csv"
with open(file, "wb") as f:
pickle.dump(data, f)
def _restore_run(self):
file = f"{out_dir()}/runs/{self.config_str}_{self.i}.csv"
try:
with open(file, "rb") as f:
return pickle.load(f)
except FileNotFoundError:
return None
def delete_from_csr(mat, row_indices=None, col_indices=None):
"""
Remove the rows (denoted by ``row_indices``) and columns (denoted by ``col_indices``) from the CSR sparse matrix ``mat``.
WARNING: Indices of altered axes are reset in the returned matrix
"""
if not isinstance(mat, csr_matrix):
raise ValueError("works only for CSR format -- use .tocsr() first")
rows = []
cols = []
if row_indices is not None:
rows = list(row_indices)
if col_indices is not None:
cols = list(col_indices)
if len(rows) > 0 and len(cols) > 0:
row_mask = np.ones(mat.shape[0], dtype=bool)
row_mask[rows] = False
col_mask = np.ones(mat.shape[1], dtype=bool)
col_mask[cols] = False
return mat[row_mask][:, col_mask]
elif len(rows) > 0:
mask = np.ones(mat.shape[0], dtype=bool)
mask[rows] = False
return mat[mask]
elif len(cols) > 0:
mask = np.ones(mat.shape[1], dtype=bool)
mask[cols] = False
return mat[:, mask]
else:
return mat
def expected_error(learner, X, predict_proba=None, p_subsample=1.0, unique_labels=None):
loss = "binary"
expected_error = np.zeros(shape=(X.shape[0],))
possible_labels = (
unique_labels if unique_labels is not None else np.unique(learner.y_training)
)
X_proba = predict_proba or learner.predict_proba(X)
cloned_estimator = clone(learner.estimator)
for x_idx in range(X.shape[0]):
# subsample the data if needed
if np.random.rand() <= p_subsample:
if isinstance(X, csr_matrix):
X_reduced = delete_from_csr(X, [x_idx])
else:
X_reduced = np.delete(X, x_idx, axis=0)
# estimate the expected error
for y_idx, y in enumerate(possible_labels):
if isinstance(X, csr_matrix):
X_new = scipy.sparse.vstack((learner.X_training, X[[x_idx]]))
else:
X_new = data_vstack(
(learner.X_training, np.expand_dims(X[x_idx], axis=0))
)
y_new = data_vstack(
(
learner.y_training,
np.array(y).reshape(
1,
),
)
)
cloned_estimator.fit(X_new, y_new)
refitted_proba = cloned_estimator.predict_proba(X_reduced)
nloss = _proba_uncertainty(refitted_proba)
expected_error[x_idx] += np.sum(nloss) * X_proba[x_idx, y_idx]
else:
expected_error[x_idx] = np.inf
return expected_error
def csr_vappend(a, b):
"""Takes in 2 csr_matrices and appends the second one to the bottom of the first one.
Much faster than scipy.sparse.vstack but assumes the type to be csr and overwrites
the first matrix instead of copying it. The data, indices, and indptr still get copied."""
a.data = np.hstack((a.data, b.data))
a.indices = np.hstack((a.indices, b.indices))
a.indptr = np.hstack((a.indptr, (b.indptr + a.nnz)[1:]))
a._shape = (a.shape[0] + b.shape[0], b.shape[1])
return a
def reconstruct_last_unlabelled(clfs, X_unlabelled, Y_oracle, dense_atol=1e-6):
"""
Reconstruct the last unlabelled pool from stored information.
This is used to resume experiments that were terminated at 1000 instances.
"""
# Defensive asserts
assert clfs is not None, "Classifiers must be non-none"
assert len(clfs) == 100
assert X_unlabelled is not None, "X_unlabelled must be non-none"
assert Y_oracle is not None, "Y_oracle must be non-none"
assert (
X_unlabelled.shape[0] == Y_oracle.shape[0]
), "unlabelled and oracle pools have a different shape"
# Fast row-wise compare function
def compare(A, B, sparse):
"https://stackoverflow.com/questions/23124403/how-to-compare-2-sparse-matrix-stored-using-scikit-learn-library-load-svmlight-f"
if sparse:
pairs = np.where(
np.isclose(
(np.array(A.multiply(A).sum(1)) + np.array(B.multiply(B).sum(1)).T)
- 2 * A.dot(B.T).toarray(),
0,
)
)
# TODO: Assert A[A_idx] == B[B_idx] for all pairs? Harder with sparse matrices.
else:
dists = euclidean_distances(A, B, squared=True)
pairs = np.where(np.isclose(dists, 0, atol=1e-1, rtol=0))
pairs = np.array(
[
[A_idx, B_idx]
for A_idx, B_idx in zip(*pairs)
if (A[A_idx] == B[B_idx]).all()
]
).T
return pairs
clf = clfs[-1]
assert clf.X_training.shape[0] == 1000, f"{clf.X_training.shape[0]} == 1000"
equal_rows = list(
compare(
X_unlabelled,
clf.X_training,
sparse=isinstance(X_unlabelled, scipy.sparse.csr_matrix),
)
)
# Unlike in reconstruct_unlabelled we are doing this in one shot, and are looking
# for all instances which need to be removed. This is eqaul to 1000 minus the
# initial set size which were never present in the unlabelled pool.
target_n = 1000 - clfs[0].X_training.shape[0]
# Some datasets (rcv1) contain duplicates. These were only queried once, so we
# make sure we only remove a single copy from the unlabelled pool.
if len(equal_rows[0]) > target_n:
logger.debug(f"Found {len(equal_rows[0])} equal rows")
really_equal_rows = []
for clf_idx in np.unique(equal_rows[1]):
dupes = equal_rows[0][equal_rows[1] == clf_idx]
# some datasets have duplicates with differing labels (rcv1)
dupes_correct_label = dupes[
(Y_oracle[dupes] == clf.y_training[clf_idx])
&
# this check is necessary so we don't mark an instance for removal twice
# when we want to mark another duplicate
np.logical_not(np.isin(dupes, really_equal_rows))
][0]
really_equal_rows.append(dupes_correct_label)
logger.debug(f"Found {len(really_equal_rows)} really equal rows")
elif len(equal_rows[0]) == target_n:
# Fast path with no duplicates
assert (Y_oracle[equal_rows[0]] == clf.y_training[equal_rows[1]]).all()
really_equal_rows = equal_rows[0]
else:
raise Exception(
f"Less than {target_n} ({len(equal_rows[0])}) equal rows were found."
+ " This could indicate an issue with the row-wise compare"
+ " function."
)
assert (
len(really_equal_rows) == target_n
), f"{len(really_equal_rows)}=={target_n} (target)"
n_before = X_unlabelled.shape[0]
if isinstance(X_unlabelled, scipy.sparse.csr_matrix):
X_unlabelled = delete_from_csr(X_unlabelled, really_equal_rows)
else:
X_unlabelled = np.delete(X_unlabelled, really_equal_rows, axis=0)
Y_oracle = np.delete(Y_oracle, really_equal_rows, axis=0)
assert (
X_unlabelled.shape[0] == n_before - target_n
), f"We found 10 equal rows but {n_before-X_unlabelled.shape[0]} were removed"
return (X_unlabelled.copy(), Y_oracle)